lgli/M_Mathematics/MD_Geometry and topology/Gelfand I.M., Gindikin S.G., Graev M.I. Selected topics in integral geometry (TMM220, AMS, 2003)(ISBN 0821829327)(T)(S)(184s)_MD_.djvu
Selected Topics in Integral Geometry (Translations of Mathematical Monographs) 🔍
Gelfand, I. M., Gindikin, S. G., Graev, M. I.
American Mathematical Society, Translations of mathematical monographs, v. 220, Providence, R.I, ©2003
English [en] · DJVU · 1.4MB · 2003 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
description
The miracle of integral geometry is that it is often possible to recover a function on a manifold just from the knowledge of its integrals over certain submanifolds. The founding example is the Radon transform, introduced at the beginning of the 20th century. Since then, many other transforms were found, and the general theory was developed. Moreover, many important practical applications were discovered. The best known, but by no means the only one, being to medical tomography. This book is a general introduction to integral geometry, the first from this point of view for almost four decades. The authors, all leading experts in the field, represent one of the most influential schools in integral geometry. The book presents in detail basic examples of integral geometry problems, such as the Radon transform on the plane and in space, the John transform, the Minkowski-Funk transform, integral geometry on the hyperbolic plane and in the hyperbolic space, the horospherical transform and its relation to representations of $SL(2,\mathbb C)$, integral geometry on quadrics, etc. The study of these examples allows the authors to explain important general topics of integral geometry, such as the Cavalieri conditions, local and nonlocal inversion formulas, and overdetermined problems in integral geometry. Many of the results in the book were obtained by the authors in the course of their career-long work in integral geometry.
Alternative filename
lgrsnf/M_Mathematics/MD_Geometry and topology/Gelfand I.M., Gindikin S.G., Graev M.I. Selected topics in integral geometry (TMM220, AMS, 2003)(ISBN 0821829327)(T)(S)(184s)_MD_.djvu
Alternative filename
nexusstc/Selected topics in integral geometry/3da94d6d32b9799fe0c2ee6dcada4a2b.djvu
Alternative author
Izrailʹ Moiseevich Gelʹfand; Semen Grigorʹevich Gindikin; Mark Iosifovich Graev
Alternative author
Israel M. Gel'fand, S. G. Gindikin, M. I. Graev
Alternative author
Izrail Moiseevitch Gelfand
Alternative edition
American Mathematical Society, [N.p.], 2018
Alternative edition
United States, United States of America
Alternative edition
October 2003
metadata comments
Kolxo3 -- 2011
metadata comments
lg597458
metadata comments
{"isbns":["0821829327","9780821829325"],"last_page":184,"publisher":"AMS","series":"TMM220"}
Alternative description
<p>The miracle of integral geometry is that it is often possible to recover a function on a manifold just from the knowledge of its integrals over certain submanifolds. The founding example is the Radon transform, introduced at the beginning of the 20th century. Since then, many other transforms were found, and the general theory was developed. Moreover, many important practical applications were discovered, the best known, but by no means the only one, being to medical tomography. The present book is a general introduction to integral geometry, the first from this point of view for almost four decades. The authors, all leading experts in the field, represent one of the most influential schools in integral geometry. The book presents in detail basic examples of integral geometry problems, such as the Radon transform on the plane and in space, the John transform, the Minkowski-Funk transform, integral geometry on the hyperbolic plane and in the hyperbolic space, the horospherical transform and its relation to representations of $SL(2,\mathbb C)$, integral geometry on quadrics, etc. The study of these examples allows the authors to explain important general topics of integral geometry, such as the Cavalieri conditions, local and nonlocal inversion formulas, and overdetermined problems. Many of the results in the book were obtained by the authors in the course of their career-long work in integral geometry.</p>
Alternative description
"The present book is a general introduction to integral geometry, the first from this point of view for almost four decades. The authors, all leading experts in the field, represent one of the most influential schools in integral geometry. The book presents in detail basic examples of integral geometry problems, such as the Radon transform on the plane and in space, the John transform, the Minkowski-Funk transform, integral geometry on the hyperbolic plane and in the hyperbolic space, the horospherical transform and its relation to representations of SL(2,C), integral geometry on quadrics, etc. The study of these examples allows the authors to explain important general topics of integral geometry, such as the Cavalieri conditions, local and nonlocal inversion formulas, and overdetermined problems. Many of the results in the book were obtained by the authors in the course of their career-long work in integral geometry."--BOOK JACKET
Alternative description
1.1. Radon transform on the Euclidean plane.
date open sourced
2011-07-22
🚀 Fast downloads
Become a member to support the long-term preservation of books, papers, and more. To show our gratitude for your support, you get fast downloads. ❤️
- Fast Partner Server #1 (recommended)
- Fast Partner Server #2 (recommended)
- Fast Partner Server #3 (recommended)
- Fast Partner Server #4 (recommended)
- Fast Partner Server #5 (recommended)
- Fast Partner Server #6 (recommended)
- Fast Partner Server #7
- Fast Partner Server #8
- Fast Partner Server #9
- Fast Partner Server #10
- Fast Partner Server #11
- Fast Partner Server #12
🐢 Slow downloads
From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)
- Slow Partner Server #1 (slightly faster but with waitlist)
- Slow Partner Server #2 (slightly faster but with waitlist)
- Slow Partner Server #3 (slightly faster but with waitlist)
- Slow Partner Server #4 (slightly faster but with waitlist)
- Slow Partner Server #5 (no waitlist, but can be very slow)
- Slow Partner Server #6 (no waitlist, but can be very slow)
- Slow Partner Server #7 (no waitlist, but can be very slow)
- Slow Partner Server #8 (no waitlist, but can be very slow)
- Slow Partner Server #9 (no waitlist, but can be very slow)
- After downloading: Open in our viewer
All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
External downloads
-
For large files, we recommend using a download manager to prevent interruptions.
Recommended download managers: JDownloader -
You will need an ebook or PDF reader to open the file, depending on the file format.
Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre -
Use online tools to convert between formats.
Recommended conversion tools: CloudConvert and PrintFriendly -
You can send both PDF and EPUB files to your Kindle or Kobo eReader.
Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle” -
Support authors and libraries
✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
📚 If this is available at your local library, consider borrowing it for free there.
Total downloads:
A “file MD5” is a hash that gets computed from the file contents, and is reasonably unique based on that content. All shadow libraries that we have indexed on here primarily use MD5s to identify files.
A file might appear in multiple shadow libraries. For information about the various datasets that we have compiled, see the Datasets page.
For information about this particular file, check out its JSON file. Live/debug JSON version. Live/debug page.