Think AI: Explore the flavours of Machine Learning, Neural Networks, Computer Vision and NLP with powerful python libraries (English Edition) 🔍
Naik, Swapnali Joshi;; Dr. Lovi Raj Gupta; Dr. Rajesh Singh; Dr. Anita Gehlot; Rydhm Beri
BPB Publications, BPB Online LLP, [N.p.], 2022
English [en] · EPUB · 9.0MB · 2022 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
description
"Think AI" is a rapid-learning book that covers a wide range of Artificial Intelligence topics, including Machine Learning, Deep Learning, Computer Vision, and Natural Language Processing. Most popular Python libraries and toolkits are applied to develop intelligent and thoughtful applications. With a solid grasp of python programming and mathematics, you may use this book's statistical models and AI algorithms to meet AI needs and data insight issues. Each chapter in this book guides you swiftly through the core concepts and then directly to their implementation using Python toolkits. This book covers the techniques and skill sets required for data collection, pre-processing, installing libraries, preparing data models, training and deploying the models, and optimising model performance. The book guides you through the OpenCV toolkit for real-time picture recognition and detection, allowing you to work with computer vision. The book describes how to analyse linguistic data and conduct text mining using the NLTK toolbox and provides a brief overview of NLP ideas. Throughout the book, you will utilise major Python libraries and toolkits such as pandas, TensorFlow, scikit-learn, and matplotlib.
Alternative filename
lgli/Think_AI_2022.epub
Alternative filename
lgrsnf/Think_AI_2022.epub
Alternative author
Swapnali Joshi Naik
Alternative publisher
Manish Jain
Alternative edition
English Edition, 2022
Alternative edition
S.l.] :, 2022
Alternative edition
India, India
metadata comments
{"publisher":"BPB Publications"}
date open sourced
2022-07-31
🚀 Fast downloads
Become a member to support the long-term preservation of books, papers, and more. To show our gratitude for your support, you get fast downloads. ❤️
- Fast Partner Server #1 (recommended)
- Fast Partner Server #2 (recommended)
- Fast Partner Server #3 (recommended)
- Fast Partner Server #4 (recommended)
- Fast Partner Server #5 (recommended)
- Fast Partner Server #6 (recommended)
- Fast Partner Server #7
- Fast Partner Server #8
- Fast Partner Server #9
- Fast Partner Server #10
- Fast Partner Server #11
- Fast Partner Server #12
🐢 Slow downloads
From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)
- Slow Partner Server #1 (slightly faster but with waitlist)
- Slow Partner Server #2 (slightly faster but with waitlist)
- Slow Partner Server #3 (slightly faster but with waitlist)
- Slow Partner Server #4 (slightly faster but with waitlist)
- Slow Partner Server #5 (no waitlist, but can be very slow)
- Slow Partner Server #6 (no waitlist, but can be very slow)
- Slow Partner Server #7 (no waitlist, but can be very slow)
- Slow Partner Server #8 (no waitlist, but can be very slow)
- Slow Partner Server #9 (no waitlist, but can be very slow)
- After downloading: Open in our viewer
All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
External downloads
-
For large files, we recommend using a download manager to prevent interruptions.
Recommended download managers: JDownloader -
You will need an ebook or PDF reader to open the file, depending on the file format.
Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre -
Use online tools to convert between formats.
Recommended conversion tools: CloudConvert and PrintFriendly -
You can send both PDF and EPUB files to your Kindle or Kobo eReader.
Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle” -
Support authors and libraries
✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
📚 If this is available at your local library, consider borrowing it for free there.
Total downloads:
A “file MD5” is a hash that gets computed from the file contents, and is reasonably unique based on that content. All shadow libraries that we have indexed on here primarily use MD5s to identify files.
A file might appear in multiple shadow libraries. For information about the various datasets that we have compiled, see the Datasets page.
For information about this particular file, check out its JSON file. Live/debug JSON version. Live/debug page.