upload/misc/worldtracker.org/Science/Biomedical Engineering 65 Ebooks - Rovhal_Knullare/CRC Press - Biomedical Photonics Handbook.pdf
Biomedical Photonics Handbook 🔍
Tuan Vo-Dinh
CRC Press
English [en] · PDF · 30.8MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
description
Table of Contents
Biomedical Photonics Handbook Vol I 1
1116_fm.pdf 1
Biomedical Photonics Handbook -1
Advisory Board 2
Preface 5
Acknowledgments 8
Editor-in-Chief 9
Contributors 10
Contents 18
1116_C01 23
Biomedical Photonics Handbook 23
Table of Contents -1
Chapter 1: Biomedical Photonics: A Revolution at the Interface of Science and Technology 23
1.1 Introduction 23
1.2 Biomedical Photonics: A Definition 24
1.3 Scientific and Technological Revolutions Shaping Biomedical Photonics 25
1.3.1 The Quantum Theory Revolution: A Historic Evolution of the Concept of Light 25
1.3.2 The Technology Revolution 30
1.3.2.1 The Laser 31
1.3.2.2 The Microchip 32
1.3.2.3 Nanotechnology 33
1.3.3 The Genomics Revolution 35
1.4 Conclusion 37
Acknowledgments 38
References 38
1116_C02 41
Biomedical Photonics Handbook 41
Table of Contents -1
Section I: Photonics and Tissue Optics 41
Chapter 2: Optical Properties of Tissue 42
2.1 Introduction 42
2.2 Fundamental Optical Properties 44
2.2.1 Refraction 44
2.2.1.1 Index of Refraction 44
2.2.1.2 Reflection and Refraction at an Interface 45
2.2.2 Scattering 46
2.2.2.1 Scattering at a Localized Inclusion 46
2.2.2.2 Rayleigh Limit 49
2.2.2.3 Mie Regime 49
2.2.3 Absorption 51
2.2.3.1 Absorption Processes 51
2.2.3.2 Absorption Cross Section and Coefficient 52
2.3 Light Transport in Tissue 53
2.3.1 Preliminaries to Radiation Transport Theory 54
2.3.1.1 Coherent and Incoherent Light 54
2.3.1.2 Multiple Scattering 56
2.3.2 The Radiation Transport Model 58
2.3.2.1 Basic Parameters 58
2.3.2.2 Scattering Phase Function 59
2.3.2.3 Radiation Transport Equation 60
2.3.3 Analytical Solutions for Limiting Cases 61
2.3.3.1 Incident and Diffuse Light 62
2.3.3.2 Absorption-Dominant Limit 63
2.3.3.3 Scattering-Dominant Limit: the Diffusion Approximation 66
2.3.4 Numerical Approach: Monte Carlo Simulations 71
2.3.5 Kubelka–Munk Model 72
2.3.6 Time-Resolved Propagation of Light Pulses 74
2.3.6.1 Effective Index of Refraction 74
2.4 Tissue Properties 77
2.4.1 Refractive Indices 77
2.4.2 Scattering Properties 77
2.4.3 Absorption Properties 79
2.4.3.1 The Therapeutic Window 79
2.4.3.2 Absorption Properties of Tissue Components 95
2.5 Conclusion 111
2.6 Summary 111
Acknowledgments 113
References 113
1116_C03 117
Biomedical Photonics Handbook 117
Table of Contents -1
Chapter 3: Light– Tissue Interactions 117
3.1 Introduction 117
3.2 Light Interactions with a Strongly Scattering Tissue 119
3.2.1 Continuous Wave (CW) Light 119
3.2.2 Polarized Light 122
3.2.3 Short Light Pulses 125
3.2.4 Diffuse Photon-Density Waves 127
3.3 Optothermal Interactions 127
3.3.1 Temperature Rise and Tissue Damage 127
3.3.2 Optothermal and Optoacoustic Effects 129
3.4 Refractive Index and Controlling of Light Interactions with Tissues 131
3.5 Fluorescence 133
3.5.1 Fundamentals and Methods 133
3.5.2 Multiphoton Fluorescence 134
3.6 Vibrational Energy States Excitation 134
3.7 Light Interaction with Eye Tissues 135
3.8 Formation of Speckles 136
3.9 Dynamic Light Scattering 138
3.9.1 Quasi-Elastic Light Scattering 138
3.9.2 Diffusion Wave Spectroscopy 138
Acknowledgment 139
References 139
1116_C04 143
Biomedical Photonics Handbook 143
Table of Contents -1
Chapter 4: Theoretical Models and Algorithms in Optical Diffusion Tomography 143
4.1 Introduction 143
4.2 Photon Transport in Tissue 146
4.3 Optical Diffusion Tomography 147
4.3.1 Classes of Inversion Algorithms 147
4.3.2 Analytical and Quasi-Analytical Methods 148
4.3.3 Nonlinear Iterative Methods 149
4.4 Algorithms for Imaging 149
4.4.1 An Explicit Solution Based on Diffraction Tomography 149
4.4.2 Nonlinear Iterative Algorithm: Frequency Domain Data 153
4.4.2.1 Finite Number of Parameters 156
4.4.2.2 Adding a Regularization Term 157
4.4.2.3 Example: Two-Dimensional Imaging of a Scattering Cross Section 158
4.4.3 Nonlinear Iterative Algorithm: Time-Resolved Data 159
4.5 Conclusion 161
Acknowledgments 162
References 162
1116_C05 167
Biomedical Photonics Handbook 167
Table of Contents -1
Section II: Photonic Devices 167
Chapter 5: Laser Light in Biomedicine and the Life Sciences: From the Present to the Future 168
5.1 Introduction 168
5.2 Laser–Biomatter Interaction 170
5.3 Laser Biomedical Macrodiagnostics 172
5.4 Spectral Biomedical Microdiagnostics 174
5.4.1 Spectral Resolution 174
5.4.2 Time Resolution 174
5.4.3 Sensitivity 175
5.4.4 Selectivity 175
5.4.5 Spatial Resolution 175
5.5 Laser Therapy 176
5.6 Laser Surgery 178
5.7 Conclusion 181
References 181
1116_C06 184
Biomedical Photonics Handbook 184
Table of Contents -1
Chapter 6: Basic Instrumentation in Photonics 184
6.1 Basic Spectrometer 184
6.1.1 Basic Apparatus 184
6.1.2 Instrument for Absorption Measurements 185
6.1.3 Instrument for Scattering Measurements 186
6.1.4 Instrument for Emission Measurements 186
6.2 Instrumental Components: General Considerations 188
6.2.1 Excitation Light Sources 188
6.2.1.1 High-Pressure Arc Lamps 188
6.2.1.2 Low-Pressure Vapor Lamps 189
6.2.1.3 Incandescent Lamps 189
6.2.1.4 Solid-State Light Sources 189
6.2.1.5 Lasers 189
6.2.1.5.1 General Properties of Lasers 190
6.2.1.5.2 Gas Lasers 190
6.2.1.5.3 Solid-State Lasers 191
6.2.1.5.4 Semiconductor Lasers 191
6.2.1.5.5 Tunable Dye Lasers 192
6.2.1.5.6 Tunable Lasers with Optical Parametric Oscillators 192
6.2.2 Optical Fibers and Dispersive Devices 192
6.2.2.1 Optical Filters 192
6.2.2.2 Monochromators 194
6.2.2.2.1 Prism Monochromators 194
6.2.2.2.2 Grating Monochromators 195
6.2.2.3 Tunable Filters 198
6.2.3 Optical Fibers 198
6.2.4 Polarizers 199
6.2.5 Detectors 200
6.2.5.1 Single-Channel Detectors 200
6.2.5.1.1 Photomultipliers 200
6.2.5.1.2 Photodiode and Avalanche Photodiode 202
6.2.5.1.3 Hybrid Detectors 203
6.2.5.2 Multichannel Detectors 203
6.2.5.2.1 Vidicons 203
6.2.5.2.2 Photodiode Array 204
6.2.5.2.3 Charge-Coupled Device 204
6.2.5.2.4 Other Solid-State Detectors 206
6.2.5.2.5 CMOS Array 206
6.2.5.2.6 Streak Cameras 206
6.2.6 Detection Methods 207
6.2.6.1 Direct Current Technique 207
6.2.6.2 Alternating Current Technique 207
6.2.6.3 Digital Photon Counting Technique 207
6.2.6.4 Time-Resolved and Phase-Resolved Detection Methods 208
6.2.6.4.1 Time-Resolved Detection 208
6.2.6.4.2 Phase-Resolved Detection 208
6.2.6.5 Multispectral Imaging 210
6.3 Conclusion 210
Acknowledgments 212
References 212
1116_C07 214
Biomedical Photonics Handbook 214
Table of Contents -1
Chapter 7: Optical Fibers and Waveguides for Medical Applications 214
7.1 Introduction 214
7.2 Theory 216
7.2.1 Solid-Core Optical Fibers 216
7.2.1.1 Fiber Basics 216
7.2.1.2 Ray Theory 216
7.2.1.3 Mode Propagation in Solid-Core Optical Fibers 217
7.2.1.4 Attenuation Mechanisms in Solid-Core Fibers 219
7.2.1.5 Reflection 219
7.2.1.6 Scattering 219
7.2.1.7 Absorption 219
7.2.1.8 Radiation 220
7.2.2 Hollow Waveguides 220
7.2.2.1 Hollow Waveguides Basics 220
7.2.2.2 Attenuation Mechanisms in Hollow Waveguides 220
7.2.2.3 Ray Theory 221
7.3 Multilayer Waveguides 223
7.4 X-Ray Waveguides 225
7.5 Coupling Devices 226
7.6 Distal Tips 228
7.7 Materials for Fabrication of Optical Fibers and Waveguides 228
7.7.1 Silica Fibers 228
7.7.2 Hollow Waveguides 230
7.8 Fibers for the IR Region 230
7.8.1 Glass Fibers 230
7.8.1.1 Fluoride-Based Glass 230
7.8.1.2 Chalcogenide Fibers 231
7.8.2 Crystalline Fibers 231
7.8.2.1 Single-Crystal Fibers 231
7.8.2.2 Polycrystalline Fibers 232
7.8.3 Liquid-Core Fibers 232
7.9 Conclusions 232
References 232
1116_C08 236
Biomedical Photonics Handbook 236
Table of Contents -1
Chapter 8: Biological Imaging Spectroscopy 236
8.1 Introduction 236
8.2 Spectral Image Cubes 237
8.3 Instruments 238
8.3.1 Spectral Scanning Instruments 240
8.3.1.1 Fixed Filters 240
8.3.1.2 Linear Variable Filters 240
8.3.1.3 Tunable Filters 241
8.3.2 Spatial Scanning Systems 244
8.3.2.1 Pushbroom 244
8.3.2.2 Interferometers 244
8.3.3 Other Approaches 245
8.3.3.1 Rotogram 245
8.3.3.2 Computed Tomographic Imaging Spectrometer (CTIS) 246
8.3.3.3 Hadamard Transform Imaging Spectroscopy 247
8.3.3.4 Fiber-Optic Image Compression 247
8.3.3.5 Spectral Source 248
8.3.3.6 Multispectral Confocal Microscopy 248
8.4 Data Analysis 249
8.4.1 Image Analysis 249
8.4.2 Analysis of Spectral Images 249
8.4.2.1 Pixel Classification 250
8.4.2.2 Pixel-Unmixing 250
8.5 Applications 251
8.5.1 Imaging Spectroscopy 251
8.5.2 Multiplex Imaging, Including Immunohistochemistry and Hybridizations 252
8.5.3 Spectral Karyotyping 252
8.5.4 Immunofluorescence 254
8.5.5 Immunohistochemistry 255
8.5.6 FISH and TRISH 256
8.5.7 Spectral Segmentation and Morphometry 256
8.6 Conclusion 258
Acknowledgment 258
References 258
1116_C09 262
Biomedical Photonics Handbook 262
Table of Contents -1
Section III: Photonic Detection and Imaging Techniques 262
Chapter 9: Lifetime- Based Imaging 263
9.1 Introduction 263
9.2 Techniques for Lifetime-Based Imaging 264
9.2.1 Time Domain 265
9.2.1.1 Time-Correlated Single-Photon Counting 266
9.2.1.2 Multichannel Photon Counting 268
9.2.1.3 Sampling Methods 268
9.2.1.4 Spatially Sensitive Multichannel Plate Detectors 270
9.2.1.5 Multipulse Methods 272
9.2.2 Frequency Domain 272
9.2.2.1 Homodyne and Heterodyne FLIM 274
9.2.2.2 Optical Methods 277
9.2.2.3 FLIM with Lock-In Amplifiers 277
9.2.2.4 Multifrequency FLIM 277
9.2.3 Three-Dimensional Wide-Field FLIM 278
9.3 Specifics of FLIM Data Analysis 279
9.3.1 Fast Two-Gate Analysis 279
9.3.2 Global Analysis of FLIM Data 280
9.4 Selected FLIM Applications 280
9.4.1 Intracellular Lifetime-Based pH Imaging and Ion Mapping 281
9.4.2 Lifetime-Resolved Imaging of Cellular Processes 281
9.4.3 Cellular Interactions Determined by the FRET-FLIM 281
9.4.4 Tissue Imaging and Clinical Applications 282
9.4.5 Lifetime Imaging with Long-Lived Fluorophores 282
9.5 Outlook 282
Acknowledgment 283
References 283
1116_C10 293
Biomedical Photonics Handbook 293
Table of Contents -1
Chapter 10: Confocal Microscopy 293
10.1 Introduction 293
10.2 Image Formation in Scanning Microscopes 294
10.3 Applications of Depth Discrimination 296
10.4 Fluorescence Microscopy 299
10.5 Optical Architectures 301
10.5.1 The Aperture Mask System 302
10.5.2 The Use of Structured Illumination to Achieve Optical Sectioning 303
10.6 Abberation Correction 306
10.7 Summary 308
References 309
1116_C11 311
Biomedical Photonics Handbook 311
Table of Contents -1
Chapter 11: Two- Photon Excitation Fluorescence Microscopy 311
11.1 Introduction 311
11.2 Basic Principles of Multiphoton Excitation and Image Formation 312
11.2.1 The Physics of Multiphoton Excitation 312
11.2.2 Imaging Properties of Two-Photon Microscopy 313
11.3 Experimental Considerations of Multiphoton Microscopy 315
11.3.1 Instrument Design of Multiphoton Microscopy 315
11.3.2 Two-Photon Fluorescent Probes and Their Biological Applications 317
11.4 Optimization of Multiphoton Microscopy for Deep Tissue Imaging 318
11.4.1 Effect of Tissue Optical Properties on Multiphoton Microscopy Efficiency and Image Formation 318
11.4.2 Photodamage Mechanisms in Tissues 321
11.4.3 Tissue-Level Applications of Two-Photon Microscopy 321
11.5 Conclusion 322
Acknowledgments 323
References 323
1116_C12 328
Biomedical Photonics Handbook 328
Table of Contents -1
Chapter 12: Near- Field Imaging in Biological and Biomedical Applications 328
12.1 Introduction 328
12.2 Near-Field Optical Microscopy 329
12.2.1 Basic Principles of Near-Field Optical Microscopy 329
12.2.2 Instrumentation 330
12.2.2.1 General Considerations 330
12.2.2.2 Near-Field Optical Probes 331
12.3 Biological Applications of Near-Field Optical Microscopy 332
12.3.1 Practical Considerations 332
12.3.2 Investigation of Cell Material 332
12.3.2.1 Near-Field Fluorescence Microscopy 332
12.3.2.1.1 Stained Cell Tissue 332
12.3.2.1.2 Actin Filaments 333
12.3.2.1.3 NSOM inside Cells 333
12.3.2.1.4 In Vitro Chemical Imaging of Tobacco Mosaic Virus 334
12.3.2.1.5 Single Green Fluorescing Proteins 336
12.3.2.2 Near-Field Raman Spectroscopy of Labeled DNA 337
12.3.3 Model Cell Membranes 338
12.4 Special Near-Field Techniques for Biological Applications 339
12.4.1 Fluorescence Resonance Energy Transfer 339
12.4.2 “Apertureless” Near-Field Microscopy 339
12.4.3 Multiphoton Near-Field Microscopy 340
12.4.4 Nonoptical Near-Field Microscopy 340
12.5 Outlook and Conclusions 341
References 341
1116_C13 347
Biomedical Photonics Handbook 347
Table of Contents -1
Chapter 13: Optical Coherence Tomography Imaging 347
13.1 Introduction 347
13.2 Principles of Operation of Optical Coherence Tomography 348
13.2.1 Measuring Ultrafast Optical Echoes 349
13.2.2 Resolution and Sensitivity of Optical Coherence Tomography 351
13.2.3 Image Generation in Optical Coherence Tomography 352
13.3 Optical Coherence Tomography Technology and Systems 354
13.4 Applications of Optical Coherence Tomography 358
13.4.1 Optical Coherence Tomography Imaging in Ophthalmology 358
13.4.2 Optical Coherence Tomography and Optical Biopsy 360
13.4.3 Imaging Where Excisional Biopsy Is Hazardous or Impossible 361
13.4.4 Detecting Early Neoplastic Changes 362
13.4.5 Guiding Surgical Intervention 365
13.4.6 Ultrahigh-Resolution Optical Coherence Tomography 368
13.5 Summary 370
Acknowledgments 370
References 370
1116_C14 376
Biomedical Photonics Handbook 376
Table of Contents -1
Chapter 14: Speckle Correlometry 376
14.1 Introduction 376
14.2 Statistical Properties of Speckles: Basic Principles and Results 377
14.2.1 First-Order Speckle Statistics 377
14.2.2 Second-Order Speckle Statistics 381
14.3 Temporal Correlation Analysis of Speckle Intensity Fluctuations as the Tool for Scattering Media Diagnostics 384
14.3.1 Single-Scattering Systems 384
14.3.2 Multiple-Scattering Systems 386
14.4 Angular Correlations of Multiply Scattered Light 389
14.5 Use of Time-Varying Speckle Contrast Analysis for Tissue Functional Diagnostics and Visualization 389
14.6 Imaging of Scattering Media with Use of Partially Coherent Speckles 393
14.7 Summary 394
Acknowledgments 395
References 395
1116_C15 399
Biomedical Photonics Handbook 399
Table of Contents -1
Chapter 15: Laser Doppler Perfusion Monitoring and Imaging 399
15.1 Introduction 399
15.2 Theory 401
15.2.1 The Single Scattering Event 401
15.2.2 Detection 402
15.2.3 Signal Processing 404
15.2.3.1 Derivation of 404
15.2.3.2 Derivation of 405
15.2.3.3 Power Spectral Density 405
15.2.4 Sampling Volume 407
15.3 Instrumentation 407
15.3.1 Laser Doppler Perfusion Monitoring 407
15.3.1.1 First Experimental Setup 407
15.3.1.2 LDPM Devices 407
15.3.1.3 Recording Tissue Perfusion 409
15.3.2 Laser Doppler Perfusion Imaging 409
15.3.2.1 From Monitoring to Imaging 409
15.3.2.2 LDPI Devices 410
15.3.2.3 Monitoring Mode 411
15.3.2.4 High-Resolution LDPI 411
15.3.2.5 Recording an Image 412
15.3.3 Performance Check and Calibration 412
15.4 Applications 413
15.4.1 LDPM Applications 413
15.4.2 LDPI Applications 413
15.5 Conclusions 413
References 414
1116_C16 423
Biomedical Photonics Handbook 423
Table of Contents -1
Chapter 16: Light Scatter Spectroscopy and Imaging of Cellular and Subcellular Events 423
Overview 423
16.1 Introduction 423
16.2 Brief Theoretical Overview 424
16.2.1 General Formulation of Scattering by a Single Particle 425
16.2.2 Common Approximations to Solve for the Scattered Field of Biological Particles 427
16.2.2.1 Rayleigh-Gans Theory for Scattering Particles with Refractive Index Ratio 427
Close to 1 427
16.2.2.2 Mie Theory for Spherical Particles of Arbitrary Size and Index 428
16.2.3 Solving the Scattering Problem for a Scatterer of Arbitrary Shape and Index 428
16.3 Scatter Data Interpretation 429
16.4 Methods and Applications of Light Scatter Measurements to the Study of Cells, Organelles, and Tissue Slices 430
16.4.1 Light Scattering Spectroscopy of Cells and Organelles in Suspensions 430
16.4.1.1 Methods to Study Scattering by Particle Suspensions 430
16.4.1.2 Applications 430
16.4.1.2.1 Flow Cytometry 430
16.4.1.2.2 Angular Scatter Measurements of Isolated Mitochondria 431
16.4.1.2.3 Angular Scatter Measurements of Cellular Suspensions 432
16.4.1.2.4 Angular Scatter Measurements of Bacteria, Macromolecules, and Vesicles 433
16.4.2 Light Scattering Spectroscopy of Cellular Monolayers and Thin Tissue Slices 434
16.4.2.1 Methods for Collecting Angular Scatter Measurements by Diffraction 434
16.4.2.2 Applications of Diffraction to Cellular Analysis 435
16.4.2.3 Other Techniques to Study Scattering of Cellular Monolayers and Thin 436
Tissue Slices 436
16.4.3 Combining Spectrscopy and Imaging 436
16.4.3.1 Transmission and Reflectance Images of Brain Slices 436
16.4.3.2 Dual Angle Scatter Imaging of Brain Slices 437
16.4.3.3 Optical Scatter Imaging of Cellular Monolayers 437
16.5 Summary and Conclusion 440
References 441
1116_C17 446
Biomedical Photonics Handbook 446
Table of Contents -1
Chapter 17: Thermal Imaging for Biological and Medical Diagnostics 446
17.1 Introduction 446
17.2 Infrared Radiation and Thermal Imaging 447
17.3 Applications of Infrared Thermal Imaging 449
17.3.1 Calculations of Temperature Profiles in a Female Breast with and without a Tumor 451
17.3.1.1 Introduction 451
17.3.1.2 Bioheat Transfer Equation 452
17.3.1.3 Mathematical Model 452
17.3.1.4 Solution 453
17.3.1.5 Optimum Results 453
17.3.1.6 Conclusion, Discussion, and Future Work 454
17.4 Summary and Conclusions 455
Acknowledgments 456
References 456
1116_C18 458
Biomedical Photonics Handbook 458
Table of Contents -1
Section IV: Biomedical Diagnostics I 458
Chapter 18: Glucose Diagnostics 459
18.1 Introduction 459
18.2 On-Line Glucose Monitoring and Process Control 460
18.2.1 Near-Infrared Spectroscopy 460
18.2.2 Raman Spectroscopy for Biological Glucose Analysis 462
18.2.3 Polarimetric Measurement of Aqueous Glucose 464
18.3 Diabetic Monitoring 464
18.3.1 Commercial Colorimetric Glucose Meters 464
18.3.2 Laser Perforation and Poration Devices for Fluid Extraction 465
18.3.3 Spectroscopic Methods for Glucose Diagnostics 466
18.3.3.1 Fluorescence Spectroscopy 466
18.3.3.1.1 Glucose Oxidase and O2 -Based Fluorescent Sensors 466
18.3.3.1.2 Nonoxygen-Based Fluorescent Sensors 467
18.3.3.2 Infrared and Near-Infrared Absorption Spectroscopy 467
18.3.3.3 Raman Spectroscopy 471
18.3.3.4 Polarimetric Glucose Sensing 472
18.3.3.5 Other Optical Glucose Diagnostic Approaches 473
18.3.3.5.1 Photoacoustic Spectroscopy 473
18.3.3.5.2. Optical Property Measurements as Indicators of Glucose 473
18.3.3.5.3 Optical Coherence Tomography 473
References 474
1116_C19 478
Biomedical Photonics Handbook 478
Table of Contents -1
Chapter 19: Clinical Diagnostic Instrumentation 478
19.1 Introduction 478
19.2 Assay Chemistry 479
19.3 System Components 480
19.4 Detection Modalities 481
19.4.1 Optical Absorbance 481
19.4.2 Reflectance 483
19.4.3 Fluorescence 484
19.4.4 Fluorescence Polarization (Fluorescence Anisotropy) 485
19.4.5 Chemiluminescence 486
19.4.6 Guided Wave Optical Sensors 486
19.4.7 Imaging Systems 487
19.5 Conclusion 488
References 488
1116_C20 492
Biomedical Photonics Handbook 492
Table of Contents -1
Chapter 20: Biosensors for Medical Applications 492
20.1 Introduction 492
20.2 Biosensors: Definition and Classification 493
20.3 Transduction Systems 494
20.3.1 Optical Detection 494
20.3.2 Electrochemical Detection 501
20.3.3 Mass-Sensitive Detection 502
20.4 Bioreceptors and Biosensor Systems 503
20.4.2 Enzyme 508
20.4.3 Nucleic Acid 508
20.4.4 Cell-Based Systems 511
20.4.5 Biomimetic Receptors 512
20.5 Probe Development: Immobilization of Biomolecules 512
20.6 Biomedical Applications 514
2.6.1 Cellular Processes 514
20.6.2 Viral Agents 515
20.6.3 Human Immunodeficiency Virus (HIV) 516
20.6.4 Bacterial Pathogens 517
20.6.5 Cancer 518
20.6.6 Parasites 519
20.6.7 Toxins 519
20.6.8 Blood Factors 521
20.6.9 Congenital Diseases 521
20.7 Conclusions 521
Acknowledgments 522
References 522
1116_C21 532
Biomedical Photonics Handbook 532
Table of Contents -1
Chapter 21: Functional Imaging with Diffusing Light 532
21.1 Introduction 532
21.2 Theory 534
21.2.1 Diffusion Approximation 534
21.2.2 Sources of Diffusing Photons 534
21.2.3 Diffuse Photon Density Waves in Homogeneous Turbid Media 535
21.2.4 Spectroscopy of Homogeneous Turbid Media 537
21.2.5 Imaging in Heterogeneous Media 538
21.2.5.1 Brief History 538
21.2.5.2 Formulation of the Imaging Problem 539
21.2.5.3 Methods for Solving the Inverse Problem 541
21.2.5.4 Challenges for Implementation 542
21.2.6 Diffusion of Light Correlations: Blood Flow 544
21.2.7 Contrast Agents 545
21.2.7.1 Fluorescent Contrast Agents 545
21.2.7.2 Differential Absorption 545
21.3 Instrumentation 546
21.3.1 Source Encoding Strategies 547
21.3.1.1 Continuous-Wave Imaging System 548
21.3.1.2 Frequency-Domain Imaging System 549
21.3.1.3 Time-Domain Imaging System 549
21.4 Experimental Diffuse Optical Tomography: Functional Breast and Brain Imaging 549
21.4.1 Multiple Absorbers in a Slab Phantom 550
21.4.2 Breast Imaging 552
21.4.2.1 Endogenous Properties of Normal Breast 553
21.4.2.2 Clinical Optical Images of Breast Lesions 554
21.4.2.3 Contrast Agents to Enhance Breast Lesion Detection 555
21.4.3 Diffuse Optical Imaging of Brain Function 557
21.4.3.1 Flow and Blood Oxygen Saturation Images of Rat Stroke 558
21.4.3.2 Activation Imaging of Brain Function in a Rat Model 558
21.4.3.3 Images of Brain Function in Humans 560
21.5 Fundamental and Practical Issues: Problems and Solutions 561
21.5.1 Detection, Localization, Characterization, and Resolution Limits 561
21.5.2 Calibration of Source and Detector Amplitudes 562
Acknowledgments 564
References 564
1116_C22 577
Biomedical Photonics Handbook 577
Table of Contents -1
Chapter 22: Photon Migration Spectroscopy Frequency- Domain Techniques 577
22.1 Photon Migration Spectroscopy 577
22.1.1 What Is Photon Migration Spectroscopy? 577
22.1.2 Historical Development 578
22.2 Working in the Frequency Domain 578
22.2.1 The Basics of the Frequency-Domain Method 578
22.2.2 The Need for the Frequency Domain 580
22.3 Frequency-Domain Solution to the Diffusion Equation 581
22.3.1 General Transport of Light in Turbid Media 581
22.3.2 The P1 Approximation: Infinite Medium Solution 581
22.3.2.1 Formal Theory 581
22.3.2.2 Frequency Dependence 582
22.3.2.3 Diffusion Wavelength 583
22.3.3 The P1 Approximation: Semi-Infinite Medium Solution 583
22.3.3.1 Changes in the Theory 583
22.3.3.2 Sensitivity to the Optical Properties 584
22.3.4 The Standard Diffusion Equation 584
22.3.5 Measurements of PDW 586
22.4 Frequency-Domain Instrumentation 587
22.4.1 The Frequency-Domain Instrument 587
22.4.2 The Frequency-Domain Source 587
22.4.2.1 Internal Modulation 587
22.4.2.2 External Modulation 588
22.4.3 The Frequency-Domain Detector 589
22.4.3.1 Signal Detection 589
22.4.3.2 Photoemissive Detectors 589
22.4.3.3 Solid-State Detectors 589
22.5 Current Clinical Examples 590
22.5.1 Breast Spectroscopy 590
22.5.1.1 Past Efforts 590
22.5.1.2 New Contributions 590
22.5.2 Functional Brain Monitoring 590
22.5.3 Measurements of Tissue Physiology 591
22.5.3.1 Deep-Tissue Arterial and Venous Oximetry 591
22.5.3.2 Monitoring Photodynamic Therapy Response 591
Acknowledgments 591
References 592
1116_C23 594
Biomedical Photonics Handbook 594
Table of Contents -1
Chapter 23: Atomic Spectrometry in Biological and Clinical Analysis 594
23.1 Atomic Spectrometry: Introduction 594
23.2 Atomic Spectrometry: Principles 595
23.3 Atomic Spectrometry: Instrumentation 597
23.3.1 Flame Atomizers 597
23.3.2 Electrothermal Atomizers 598
23.3.3 Inductively Coupled Plasmas 598
23.3.4 X-Ray Fluorescence 598
23.4 Atomic Spectrometry: Sample Preparation 599
23.5 Atomic Spectrometry: Recent Developments and Applications 600
23.5.1 Atomic Emission Spectrometry 600
23.5.2 Atomic Absorption Spectrometry 601
23.5.3 Atomic Fluorescence Spectrometry 602
23.5.4 Vapor Generation Procedures 602
23.5.5 X-Ray Fluorescence Spectrometry 603
23.6 Atomic Spectrometry: Quality Assurance 604
References 604
1116_C24 608
Biomedical Photonics Handbook 608
Table of Contents -1
Chapter 24: Capillary Electrophoresis Techniques in Biomedical Analysis 608
24.1 Overview 608
24.2 Capillary Electrophoresis Basics 609
24.2.1 Capillary Zone Electrophoresis 609
24.2.1.1 Fundamentals 609
24.2.1.2 Practical Considerations 611
24.2.2 Biomedically Significant Variations on the Capillary Electrophoresis Theme 612
24.2.3 Additional Capillary Electrophoresis Separation Modes 615
24.3 Applications of Photonics to Capillary Electrophoresis 616
24.3.1 Detection of Native Analytes 616
24.3.1.1 UV/VIS Absorbance 617
24.3.1.2 Native Fluorescence 617
24.3.1.3 Additional Detection Methods 618
24.3.2 Detection Involving Reactions and Indirect Methods 619
24.3.2.1 Derivatization (Fluorescence Labeling) in LIF 619
24.3.2.2 Indirect Detection 621
24.3.2.3 Chemiluminescence Detection 622
24.3.3 Information-Rich Photonic Detection 622
24.3.4 Optically Gated Injection 625
24.4 Biomedical Applications 625
24.4.1 Analysis of Substance P Metabolites in Microdialysis Samples 626
24.4.2 Capillary Electrophoretic Enzyme Inhibition Assays 627
References 629
1116_C25 635
Biomedical Photonics Handbook 635
Table of Contents -1
Chapter 25: Flow Cytometry 635
25.1 Introduction 635
25.2 Hardware 635
25.2.1 Fluidics 636
25.2.2 Optics 636
25.2.3 Electronics 637
25.2.4 Cell Sorting with Cloning 638
25.3 Data Analysis 638
25.4 Flow Cytometry Measurements 639
25.5 Biological Applications 640
25.5.1 Cell Cycle and Cell Proliferation 640
25.5.2 Ca-Flux 640
25.5.3 Cellular Antigen Quantitation 640
25.6 Clinical Flow Cytometry Applications 640
25.6.1 T-Cell Subset Analysis for HIV Disease 640
25.6.2 Blood Banking 643
25.6.3 Cancer 644
25.7 Clinical Microbiology 644
25.8 Biological and Medical Research 644
25.8.1 Antigen-Specific T Cells and Immune Function in Infectious Diseases 644
25.8.2 Measurement of Soluble Analytes Using Multiplex Bead Assays 645
25.8.3 Other Cell Function Assays (Phagocytosis, Oxidative Burst, Basophils) 646
25.8.4 Thermodynamic and Kinetic Analysis of Binding Phenomena 647
25.8.5 Molecular and Cellular Biology Research, Genomics, and Proteomics 648
25.6 Industrial and Environmental Cytometry 648
References 649
1116_C26 655
Biomedical Photonics Handbook 655
Table of Contents -1
Chapter 26: X- Ray Diagnostic Techniques 655
Overview 655
26.1 Biological Tissue–X-Ray Interaction and Tissue Contrast 655
26.1.1 Attenuation-Based Tissue Contrast 655
26.1.2 Phase-Based Tissue Contrast 658
26.2 X-Ray Spectra and Exposure Control 659
26.2.1 Bremstrahlung and Characteristic Radiation 659
26.2.2 X-Ray Tubes 661
26.2.3 X-Ray Generators 663
26.3 Projection X-Ray Imaging 667
26.3.1 Conventional Radiography 667
26.3.2 Digital Radiography 668
26.3.3 Image Intensifier TV Chain and Fluoroscopy 674
26.3.4 Signal-to-Noise Ratio Analysis 677
26.4 Phase Contrast X-Ray Imaging 682
Acknowledgments 686
References 687
1116_C27 689
Biomedical Photonics Handbook 689
Table of Contents -1
Chapter 27: Optical Pumping and MRI of Hyperpolarized Spins 689
27.1 Introduction 689
27.2 MRI Basics 690
27.2.1 Nuclear Magnetism 690
27.2.2 Magnetic Resonance 691
27.2.3 Spin Relaxation, Tissue Characteristics, and Bloch Equation 692
27.2.4 Mapping Spatial Distribution of Spins 693
27.3 Nuclear Spin Hyperpolarization by Optical Pumping 695
27.3.1 Optical Depopulation Pumping of Alkali–Metal Atoms 696
27.3.2 Atomic States of Rubidium 697
27.3.3 Selective Absorption of Circularly Polarized Light 697
27.3.4 De-Excitation of Rb Atoms and Ground State Polarization 698
27.3.5 Optical Pumping Dynamics and the Generalized Bloch Equation 699
27.3.6 Spin Exchange and Hyperpolarized Nuclear Spins 701
27.3.7 Laser Source Considerations 702
27.4 MRI of Hyperpolarized He and Xe 704
27.4.1 Signal Intensities 705
27.4.2 General Considerations for He and Xe as MRI Contrast Media 706
27.4.3 Signal-to-Noise Ratio and Magnetic Field Strength 707
27.4.4 Pulse Sequence Considerations 708
27.4.5 Hyperpolarized Spin Relaxation 711
27.4.6 MRI of Hyperpolarized He and Xe for Human Subjects 713
Acknowledgments 714
References 714
1116_C28 717
Biomedical Photonics Handbook 717
Table of Contents -1
Section V: Biomedical Diagnostics II: Optical Biopsy 717
Chapter 28: Fluorescence Spectroscopy for Biomedical Diagnostics 718
28.1 Introduction 718
28.2 Principles of Fluorescence Spectroscopy 719
28.2.1 Fluorescence Techniques 719
28.2.2 Photophysical Basis of Luminescence 720
28.2.2.1 Molecular Electronic Energies 720
28.2.2.2 Population of the Excited Electronic States 721
Absorption (A) 721
Vibrational Relaxation (VR) 722
Internal Conversion (IC) 722
Fluorescence (F) 722
Intersystem Crossing (ISC) 723
Phosphorescence and the Triplet State 723
Spin–Orbit Coupling 723
General Considerations for Nonradiative Properties 724
Delayed Fluorescence (DF) 724
28.3 Characterization of Luminescence 725
28.3.1 Emission, Excitation, and Synchronous Spectra 725
28.3.2 Quantum Yields 725
28.3.3 Lifetimes 726
28.3.4 Polarization 727
28.4 Biomedical Applications 727
28.4.1 Biochemical Analysis of Individual Species 728
28.4.1.1 Endogenous Fluorophores 728
28.4.1.2 Exogenous Fluorophores and Molecular Markers 730
28.4.2 Analyses and Diagnostics 731
28.4.2.1 Cellular Analyses 732
28.4.2.1.1 Autofluorescence of Cells 732
28.4.1.1.2 Cellular Fluorescence Using Exogenous Dyes 734
28.4.2.2 Tissue Analyses and Diagnostics 736
28.4.2.2.1 Autofluorescence of Tissues 736
28.4.2.2.2 Tissue Analysis Using Exogenous Dyes 742
28.4.3 Analyses and Diagnostics 742
28.4.3.1 Animal Studies 742
28.4.3.1.1 Animal Studies Using Autofluorescence 743
28.4.3.1.2 Animal Studies Using Exogenous Dyes 744
28.4.3.2 Human Studies and Clinical Diagnostics 747
28.4.3.2.1 Clinical Studies and Diagnostics Using Autofluorescence 747
28.4.3.2.2 Clinical Studies and Diagnostics Using Exogenous Dyes 754
28.5 Conclusion 757
Acknowledgments 758
References 758
1116_C29 768
Biomedical Photonics Handbook 768
Table of Contents -1
Chapter 29: Elastic- Scattering Spectroscopy and Diffuse Reflectance 768
29.1 Basic Concepts 768
29.2 Clinical Studies 772
29.3 Increasing Sensitivity to Structures of Interest 775
29.4 Understanding the Origins of Light Sc
Biomedical Photonics Handbook Vol I 1
1116_fm.pdf 1
Biomedical Photonics Handbook -1
Advisory Board 2
Preface 5
Acknowledgments 8
Editor-in-Chief 9
Contributors 10
Contents 18
1116_C01 23
Biomedical Photonics Handbook 23
Table of Contents -1
Chapter 1: Biomedical Photonics: A Revolution at the Interface of Science and Technology 23
1.1 Introduction 23
1.2 Biomedical Photonics: A Definition 24
1.3 Scientific and Technological Revolutions Shaping Biomedical Photonics 25
1.3.1 The Quantum Theory Revolution: A Historic Evolution of the Concept of Light 25
1.3.2 The Technology Revolution 30
1.3.2.1 The Laser 31
1.3.2.2 The Microchip 32
1.3.2.3 Nanotechnology 33
1.3.3 The Genomics Revolution 35
1.4 Conclusion 37
Acknowledgments 38
References 38
1116_C02 41
Biomedical Photonics Handbook 41
Table of Contents -1
Section I: Photonics and Tissue Optics 41
Chapter 2: Optical Properties of Tissue 42
2.1 Introduction 42
2.2 Fundamental Optical Properties 44
2.2.1 Refraction 44
2.2.1.1 Index of Refraction 44
2.2.1.2 Reflection and Refraction at an Interface 45
2.2.2 Scattering 46
2.2.2.1 Scattering at a Localized Inclusion 46
2.2.2.2 Rayleigh Limit 49
2.2.2.3 Mie Regime 49
2.2.3 Absorption 51
2.2.3.1 Absorption Processes 51
2.2.3.2 Absorption Cross Section and Coefficient 52
2.3 Light Transport in Tissue 53
2.3.1 Preliminaries to Radiation Transport Theory 54
2.3.1.1 Coherent and Incoherent Light 54
2.3.1.2 Multiple Scattering 56
2.3.2 The Radiation Transport Model 58
2.3.2.1 Basic Parameters 58
2.3.2.2 Scattering Phase Function 59
2.3.2.3 Radiation Transport Equation 60
2.3.3 Analytical Solutions for Limiting Cases 61
2.3.3.1 Incident and Diffuse Light 62
2.3.3.2 Absorption-Dominant Limit 63
2.3.3.3 Scattering-Dominant Limit: the Diffusion Approximation 66
2.3.4 Numerical Approach: Monte Carlo Simulations 71
2.3.5 Kubelka–Munk Model 72
2.3.6 Time-Resolved Propagation of Light Pulses 74
2.3.6.1 Effective Index of Refraction 74
2.4 Tissue Properties 77
2.4.1 Refractive Indices 77
2.4.2 Scattering Properties 77
2.4.3 Absorption Properties 79
2.4.3.1 The Therapeutic Window 79
2.4.3.2 Absorption Properties of Tissue Components 95
2.5 Conclusion 111
2.6 Summary 111
Acknowledgments 113
References 113
1116_C03 117
Biomedical Photonics Handbook 117
Table of Contents -1
Chapter 3: Light– Tissue Interactions 117
3.1 Introduction 117
3.2 Light Interactions with a Strongly Scattering Tissue 119
3.2.1 Continuous Wave (CW) Light 119
3.2.2 Polarized Light 122
3.2.3 Short Light Pulses 125
3.2.4 Diffuse Photon-Density Waves 127
3.3 Optothermal Interactions 127
3.3.1 Temperature Rise and Tissue Damage 127
3.3.2 Optothermal and Optoacoustic Effects 129
3.4 Refractive Index and Controlling of Light Interactions with Tissues 131
3.5 Fluorescence 133
3.5.1 Fundamentals and Methods 133
3.5.2 Multiphoton Fluorescence 134
3.6 Vibrational Energy States Excitation 134
3.7 Light Interaction with Eye Tissues 135
3.8 Formation of Speckles 136
3.9 Dynamic Light Scattering 138
3.9.1 Quasi-Elastic Light Scattering 138
3.9.2 Diffusion Wave Spectroscopy 138
Acknowledgment 139
References 139
1116_C04 143
Biomedical Photonics Handbook 143
Table of Contents -1
Chapter 4: Theoretical Models and Algorithms in Optical Diffusion Tomography 143
4.1 Introduction 143
4.2 Photon Transport in Tissue 146
4.3 Optical Diffusion Tomography 147
4.3.1 Classes of Inversion Algorithms 147
4.3.2 Analytical and Quasi-Analytical Methods 148
4.3.3 Nonlinear Iterative Methods 149
4.4 Algorithms for Imaging 149
4.4.1 An Explicit Solution Based on Diffraction Tomography 149
4.4.2 Nonlinear Iterative Algorithm: Frequency Domain Data 153
4.4.2.1 Finite Number of Parameters 156
4.4.2.2 Adding a Regularization Term 157
4.4.2.3 Example: Two-Dimensional Imaging of a Scattering Cross Section 158
4.4.3 Nonlinear Iterative Algorithm: Time-Resolved Data 159
4.5 Conclusion 161
Acknowledgments 162
References 162
1116_C05 167
Biomedical Photonics Handbook 167
Table of Contents -1
Section II: Photonic Devices 167
Chapter 5: Laser Light in Biomedicine and the Life Sciences: From the Present to the Future 168
5.1 Introduction 168
5.2 Laser–Biomatter Interaction 170
5.3 Laser Biomedical Macrodiagnostics 172
5.4 Spectral Biomedical Microdiagnostics 174
5.4.1 Spectral Resolution 174
5.4.2 Time Resolution 174
5.4.3 Sensitivity 175
5.4.4 Selectivity 175
5.4.5 Spatial Resolution 175
5.5 Laser Therapy 176
5.6 Laser Surgery 178
5.7 Conclusion 181
References 181
1116_C06 184
Biomedical Photonics Handbook 184
Table of Contents -1
Chapter 6: Basic Instrumentation in Photonics 184
6.1 Basic Spectrometer 184
6.1.1 Basic Apparatus 184
6.1.2 Instrument for Absorption Measurements 185
6.1.3 Instrument for Scattering Measurements 186
6.1.4 Instrument for Emission Measurements 186
6.2 Instrumental Components: General Considerations 188
6.2.1 Excitation Light Sources 188
6.2.1.1 High-Pressure Arc Lamps 188
6.2.1.2 Low-Pressure Vapor Lamps 189
6.2.1.3 Incandescent Lamps 189
6.2.1.4 Solid-State Light Sources 189
6.2.1.5 Lasers 189
6.2.1.5.1 General Properties of Lasers 190
6.2.1.5.2 Gas Lasers 190
6.2.1.5.3 Solid-State Lasers 191
6.2.1.5.4 Semiconductor Lasers 191
6.2.1.5.5 Tunable Dye Lasers 192
6.2.1.5.6 Tunable Lasers with Optical Parametric Oscillators 192
6.2.2 Optical Fibers and Dispersive Devices 192
6.2.2.1 Optical Filters 192
6.2.2.2 Monochromators 194
6.2.2.2.1 Prism Monochromators 194
6.2.2.2.2 Grating Monochromators 195
6.2.2.3 Tunable Filters 198
6.2.3 Optical Fibers 198
6.2.4 Polarizers 199
6.2.5 Detectors 200
6.2.5.1 Single-Channel Detectors 200
6.2.5.1.1 Photomultipliers 200
6.2.5.1.2 Photodiode and Avalanche Photodiode 202
6.2.5.1.3 Hybrid Detectors 203
6.2.5.2 Multichannel Detectors 203
6.2.5.2.1 Vidicons 203
6.2.5.2.2 Photodiode Array 204
6.2.5.2.3 Charge-Coupled Device 204
6.2.5.2.4 Other Solid-State Detectors 206
6.2.5.2.5 CMOS Array 206
6.2.5.2.6 Streak Cameras 206
6.2.6 Detection Methods 207
6.2.6.1 Direct Current Technique 207
6.2.6.2 Alternating Current Technique 207
6.2.6.3 Digital Photon Counting Technique 207
6.2.6.4 Time-Resolved and Phase-Resolved Detection Methods 208
6.2.6.4.1 Time-Resolved Detection 208
6.2.6.4.2 Phase-Resolved Detection 208
6.2.6.5 Multispectral Imaging 210
6.3 Conclusion 210
Acknowledgments 212
References 212
1116_C07 214
Biomedical Photonics Handbook 214
Table of Contents -1
Chapter 7: Optical Fibers and Waveguides for Medical Applications 214
7.1 Introduction 214
7.2 Theory 216
7.2.1 Solid-Core Optical Fibers 216
7.2.1.1 Fiber Basics 216
7.2.1.2 Ray Theory 216
7.2.1.3 Mode Propagation in Solid-Core Optical Fibers 217
7.2.1.4 Attenuation Mechanisms in Solid-Core Fibers 219
7.2.1.5 Reflection 219
7.2.1.6 Scattering 219
7.2.1.7 Absorption 219
7.2.1.8 Radiation 220
7.2.2 Hollow Waveguides 220
7.2.2.1 Hollow Waveguides Basics 220
7.2.2.2 Attenuation Mechanisms in Hollow Waveguides 220
7.2.2.3 Ray Theory 221
7.3 Multilayer Waveguides 223
7.4 X-Ray Waveguides 225
7.5 Coupling Devices 226
7.6 Distal Tips 228
7.7 Materials for Fabrication of Optical Fibers and Waveguides 228
7.7.1 Silica Fibers 228
7.7.2 Hollow Waveguides 230
7.8 Fibers for the IR Region 230
7.8.1 Glass Fibers 230
7.8.1.1 Fluoride-Based Glass 230
7.8.1.2 Chalcogenide Fibers 231
7.8.2 Crystalline Fibers 231
7.8.2.1 Single-Crystal Fibers 231
7.8.2.2 Polycrystalline Fibers 232
7.8.3 Liquid-Core Fibers 232
7.9 Conclusions 232
References 232
1116_C08 236
Biomedical Photonics Handbook 236
Table of Contents -1
Chapter 8: Biological Imaging Spectroscopy 236
8.1 Introduction 236
8.2 Spectral Image Cubes 237
8.3 Instruments 238
8.3.1 Spectral Scanning Instruments 240
8.3.1.1 Fixed Filters 240
8.3.1.2 Linear Variable Filters 240
8.3.1.3 Tunable Filters 241
8.3.2 Spatial Scanning Systems 244
8.3.2.1 Pushbroom 244
8.3.2.2 Interferometers 244
8.3.3 Other Approaches 245
8.3.3.1 Rotogram 245
8.3.3.2 Computed Tomographic Imaging Spectrometer (CTIS) 246
8.3.3.3 Hadamard Transform Imaging Spectroscopy 247
8.3.3.4 Fiber-Optic Image Compression 247
8.3.3.5 Spectral Source 248
8.3.3.6 Multispectral Confocal Microscopy 248
8.4 Data Analysis 249
8.4.1 Image Analysis 249
8.4.2 Analysis of Spectral Images 249
8.4.2.1 Pixel Classification 250
8.4.2.2 Pixel-Unmixing 250
8.5 Applications 251
8.5.1 Imaging Spectroscopy 251
8.5.2 Multiplex Imaging, Including Immunohistochemistry and Hybridizations 252
8.5.3 Spectral Karyotyping 252
8.5.4 Immunofluorescence 254
8.5.5 Immunohistochemistry 255
8.5.6 FISH and TRISH 256
8.5.7 Spectral Segmentation and Morphometry 256
8.6 Conclusion 258
Acknowledgment 258
References 258
1116_C09 262
Biomedical Photonics Handbook 262
Table of Contents -1
Section III: Photonic Detection and Imaging Techniques 262
Chapter 9: Lifetime- Based Imaging 263
9.1 Introduction 263
9.2 Techniques for Lifetime-Based Imaging 264
9.2.1 Time Domain 265
9.2.1.1 Time-Correlated Single-Photon Counting 266
9.2.1.2 Multichannel Photon Counting 268
9.2.1.3 Sampling Methods 268
9.2.1.4 Spatially Sensitive Multichannel Plate Detectors 270
9.2.1.5 Multipulse Methods 272
9.2.2 Frequency Domain 272
9.2.2.1 Homodyne and Heterodyne FLIM 274
9.2.2.2 Optical Methods 277
9.2.2.3 FLIM with Lock-In Amplifiers 277
9.2.2.4 Multifrequency FLIM 277
9.2.3 Three-Dimensional Wide-Field FLIM 278
9.3 Specifics of FLIM Data Analysis 279
9.3.1 Fast Two-Gate Analysis 279
9.3.2 Global Analysis of FLIM Data 280
9.4 Selected FLIM Applications 280
9.4.1 Intracellular Lifetime-Based pH Imaging and Ion Mapping 281
9.4.2 Lifetime-Resolved Imaging of Cellular Processes 281
9.4.3 Cellular Interactions Determined by the FRET-FLIM 281
9.4.4 Tissue Imaging and Clinical Applications 282
9.4.5 Lifetime Imaging with Long-Lived Fluorophores 282
9.5 Outlook 282
Acknowledgment 283
References 283
1116_C10 293
Biomedical Photonics Handbook 293
Table of Contents -1
Chapter 10: Confocal Microscopy 293
10.1 Introduction 293
10.2 Image Formation in Scanning Microscopes 294
10.3 Applications of Depth Discrimination 296
10.4 Fluorescence Microscopy 299
10.5 Optical Architectures 301
10.5.1 The Aperture Mask System 302
10.5.2 The Use of Structured Illumination to Achieve Optical Sectioning 303
10.6 Abberation Correction 306
10.7 Summary 308
References 309
1116_C11 311
Biomedical Photonics Handbook 311
Table of Contents -1
Chapter 11: Two- Photon Excitation Fluorescence Microscopy 311
11.1 Introduction 311
11.2 Basic Principles of Multiphoton Excitation and Image Formation 312
11.2.1 The Physics of Multiphoton Excitation 312
11.2.2 Imaging Properties of Two-Photon Microscopy 313
11.3 Experimental Considerations of Multiphoton Microscopy 315
11.3.1 Instrument Design of Multiphoton Microscopy 315
11.3.2 Two-Photon Fluorescent Probes and Their Biological Applications 317
11.4 Optimization of Multiphoton Microscopy for Deep Tissue Imaging 318
11.4.1 Effect of Tissue Optical Properties on Multiphoton Microscopy Efficiency and Image Formation 318
11.4.2 Photodamage Mechanisms in Tissues 321
11.4.3 Tissue-Level Applications of Two-Photon Microscopy 321
11.5 Conclusion 322
Acknowledgments 323
References 323
1116_C12 328
Biomedical Photonics Handbook 328
Table of Contents -1
Chapter 12: Near- Field Imaging in Biological and Biomedical Applications 328
12.1 Introduction 328
12.2 Near-Field Optical Microscopy 329
12.2.1 Basic Principles of Near-Field Optical Microscopy 329
12.2.2 Instrumentation 330
12.2.2.1 General Considerations 330
12.2.2.2 Near-Field Optical Probes 331
12.3 Biological Applications of Near-Field Optical Microscopy 332
12.3.1 Practical Considerations 332
12.3.2 Investigation of Cell Material 332
12.3.2.1 Near-Field Fluorescence Microscopy 332
12.3.2.1.1 Stained Cell Tissue 332
12.3.2.1.2 Actin Filaments 333
12.3.2.1.3 NSOM inside Cells 333
12.3.2.1.4 In Vitro Chemical Imaging of Tobacco Mosaic Virus 334
12.3.2.1.5 Single Green Fluorescing Proteins 336
12.3.2.2 Near-Field Raman Spectroscopy of Labeled DNA 337
12.3.3 Model Cell Membranes 338
12.4 Special Near-Field Techniques for Biological Applications 339
12.4.1 Fluorescence Resonance Energy Transfer 339
12.4.2 “Apertureless” Near-Field Microscopy 339
12.4.3 Multiphoton Near-Field Microscopy 340
12.4.4 Nonoptical Near-Field Microscopy 340
12.5 Outlook and Conclusions 341
References 341
1116_C13 347
Biomedical Photonics Handbook 347
Table of Contents -1
Chapter 13: Optical Coherence Tomography Imaging 347
13.1 Introduction 347
13.2 Principles of Operation of Optical Coherence Tomography 348
13.2.1 Measuring Ultrafast Optical Echoes 349
13.2.2 Resolution and Sensitivity of Optical Coherence Tomography 351
13.2.3 Image Generation in Optical Coherence Tomography 352
13.3 Optical Coherence Tomography Technology and Systems 354
13.4 Applications of Optical Coherence Tomography 358
13.4.1 Optical Coherence Tomography Imaging in Ophthalmology 358
13.4.2 Optical Coherence Tomography and Optical Biopsy 360
13.4.3 Imaging Where Excisional Biopsy Is Hazardous or Impossible 361
13.4.4 Detecting Early Neoplastic Changes 362
13.4.5 Guiding Surgical Intervention 365
13.4.6 Ultrahigh-Resolution Optical Coherence Tomography 368
13.5 Summary 370
Acknowledgments 370
References 370
1116_C14 376
Biomedical Photonics Handbook 376
Table of Contents -1
Chapter 14: Speckle Correlometry 376
14.1 Introduction 376
14.2 Statistical Properties of Speckles: Basic Principles and Results 377
14.2.1 First-Order Speckle Statistics 377
14.2.2 Second-Order Speckle Statistics 381
14.3 Temporal Correlation Analysis of Speckle Intensity Fluctuations as the Tool for Scattering Media Diagnostics 384
14.3.1 Single-Scattering Systems 384
14.3.2 Multiple-Scattering Systems 386
14.4 Angular Correlations of Multiply Scattered Light 389
14.5 Use of Time-Varying Speckle Contrast Analysis for Tissue Functional Diagnostics and Visualization 389
14.6 Imaging of Scattering Media with Use of Partially Coherent Speckles 393
14.7 Summary 394
Acknowledgments 395
References 395
1116_C15 399
Biomedical Photonics Handbook 399
Table of Contents -1
Chapter 15: Laser Doppler Perfusion Monitoring and Imaging 399
15.1 Introduction 399
15.2 Theory 401
15.2.1 The Single Scattering Event 401
15.2.2 Detection 402
15.2.3 Signal Processing 404
15.2.3.1 Derivation of 404
15.2.3.2 Derivation of 405
15.2.3.3 Power Spectral Density 405
15.2.4 Sampling Volume 407
15.3 Instrumentation 407
15.3.1 Laser Doppler Perfusion Monitoring 407
15.3.1.1 First Experimental Setup 407
15.3.1.2 LDPM Devices 407
15.3.1.3 Recording Tissue Perfusion 409
15.3.2 Laser Doppler Perfusion Imaging 409
15.3.2.1 From Monitoring to Imaging 409
15.3.2.2 LDPI Devices 410
15.3.2.3 Monitoring Mode 411
15.3.2.4 High-Resolution LDPI 411
15.3.2.5 Recording an Image 412
15.3.3 Performance Check and Calibration 412
15.4 Applications 413
15.4.1 LDPM Applications 413
15.4.2 LDPI Applications 413
15.5 Conclusions 413
References 414
1116_C16 423
Biomedical Photonics Handbook 423
Table of Contents -1
Chapter 16: Light Scatter Spectroscopy and Imaging of Cellular and Subcellular Events 423
Overview 423
16.1 Introduction 423
16.2 Brief Theoretical Overview 424
16.2.1 General Formulation of Scattering by a Single Particle 425
16.2.2 Common Approximations to Solve for the Scattered Field of Biological Particles 427
16.2.2.1 Rayleigh-Gans Theory for Scattering Particles with Refractive Index Ratio 427
Close to 1 427
16.2.2.2 Mie Theory for Spherical Particles of Arbitrary Size and Index 428
16.2.3 Solving the Scattering Problem for a Scatterer of Arbitrary Shape and Index 428
16.3 Scatter Data Interpretation 429
16.4 Methods and Applications of Light Scatter Measurements to the Study of Cells, Organelles, and Tissue Slices 430
16.4.1 Light Scattering Spectroscopy of Cells and Organelles in Suspensions 430
16.4.1.1 Methods to Study Scattering by Particle Suspensions 430
16.4.1.2 Applications 430
16.4.1.2.1 Flow Cytometry 430
16.4.1.2.2 Angular Scatter Measurements of Isolated Mitochondria 431
16.4.1.2.3 Angular Scatter Measurements of Cellular Suspensions 432
16.4.1.2.4 Angular Scatter Measurements of Bacteria, Macromolecules, and Vesicles 433
16.4.2 Light Scattering Spectroscopy of Cellular Monolayers and Thin Tissue Slices 434
16.4.2.1 Methods for Collecting Angular Scatter Measurements by Diffraction 434
16.4.2.2 Applications of Diffraction to Cellular Analysis 435
16.4.2.3 Other Techniques to Study Scattering of Cellular Monolayers and Thin 436
Tissue Slices 436
16.4.3 Combining Spectrscopy and Imaging 436
16.4.3.1 Transmission and Reflectance Images of Brain Slices 436
16.4.3.2 Dual Angle Scatter Imaging of Brain Slices 437
16.4.3.3 Optical Scatter Imaging of Cellular Monolayers 437
16.5 Summary and Conclusion 440
References 441
1116_C17 446
Biomedical Photonics Handbook 446
Table of Contents -1
Chapter 17: Thermal Imaging for Biological and Medical Diagnostics 446
17.1 Introduction 446
17.2 Infrared Radiation and Thermal Imaging 447
17.3 Applications of Infrared Thermal Imaging 449
17.3.1 Calculations of Temperature Profiles in a Female Breast with and without a Tumor 451
17.3.1.1 Introduction 451
17.3.1.2 Bioheat Transfer Equation 452
17.3.1.3 Mathematical Model 452
17.3.1.4 Solution 453
17.3.1.5 Optimum Results 453
17.3.1.6 Conclusion, Discussion, and Future Work 454
17.4 Summary and Conclusions 455
Acknowledgments 456
References 456
1116_C18 458
Biomedical Photonics Handbook 458
Table of Contents -1
Section IV: Biomedical Diagnostics I 458
Chapter 18: Glucose Diagnostics 459
18.1 Introduction 459
18.2 On-Line Glucose Monitoring and Process Control 460
18.2.1 Near-Infrared Spectroscopy 460
18.2.2 Raman Spectroscopy for Biological Glucose Analysis 462
18.2.3 Polarimetric Measurement of Aqueous Glucose 464
18.3 Diabetic Monitoring 464
18.3.1 Commercial Colorimetric Glucose Meters 464
18.3.2 Laser Perforation and Poration Devices for Fluid Extraction 465
18.3.3 Spectroscopic Methods for Glucose Diagnostics 466
18.3.3.1 Fluorescence Spectroscopy 466
18.3.3.1.1 Glucose Oxidase and O2 -Based Fluorescent Sensors 466
18.3.3.1.2 Nonoxygen-Based Fluorescent Sensors 467
18.3.3.2 Infrared and Near-Infrared Absorption Spectroscopy 467
18.3.3.3 Raman Spectroscopy 471
18.3.3.4 Polarimetric Glucose Sensing 472
18.3.3.5 Other Optical Glucose Diagnostic Approaches 473
18.3.3.5.1 Photoacoustic Spectroscopy 473
18.3.3.5.2. Optical Property Measurements as Indicators of Glucose 473
18.3.3.5.3 Optical Coherence Tomography 473
References 474
1116_C19 478
Biomedical Photonics Handbook 478
Table of Contents -1
Chapter 19: Clinical Diagnostic Instrumentation 478
19.1 Introduction 478
19.2 Assay Chemistry 479
19.3 System Components 480
19.4 Detection Modalities 481
19.4.1 Optical Absorbance 481
19.4.2 Reflectance 483
19.4.3 Fluorescence 484
19.4.4 Fluorescence Polarization (Fluorescence Anisotropy) 485
19.4.5 Chemiluminescence 486
19.4.6 Guided Wave Optical Sensors 486
19.4.7 Imaging Systems 487
19.5 Conclusion 488
References 488
1116_C20 492
Biomedical Photonics Handbook 492
Table of Contents -1
Chapter 20: Biosensors for Medical Applications 492
20.1 Introduction 492
20.2 Biosensors: Definition and Classification 493
20.3 Transduction Systems 494
20.3.1 Optical Detection 494
20.3.2 Electrochemical Detection 501
20.3.3 Mass-Sensitive Detection 502
20.4 Bioreceptors and Biosensor Systems 503
20.4.2 Enzyme 508
20.4.3 Nucleic Acid 508
20.4.4 Cell-Based Systems 511
20.4.5 Biomimetic Receptors 512
20.5 Probe Development: Immobilization of Biomolecules 512
20.6 Biomedical Applications 514
2.6.1 Cellular Processes 514
20.6.2 Viral Agents 515
20.6.3 Human Immunodeficiency Virus (HIV) 516
20.6.4 Bacterial Pathogens 517
20.6.5 Cancer 518
20.6.6 Parasites 519
20.6.7 Toxins 519
20.6.8 Blood Factors 521
20.6.9 Congenital Diseases 521
20.7 Conclusions 521
Acknowledgments 522
References 522
1116_C21 532
Biomedical Photonics Handbook 532
Table of Contents -1
Chapter 21: Functional Imaging with Diffusing Light 532
21.1 Introduction 532
21.2 Theory 534
21.2.1 Diffusion Approximation 534
21.2.2 Sources of Diffusing Photons 534
21.2.3 Diffuse Photon Density Waves in Homogeneous Turbid Media 535
21.2.4 Spectroscopy of Homogeneous Turbid Media 537
21.2.5 Imaging in Heterogeneous Media 538
21.2.5.1 Brief History 538
21.2.5.2 Formulation of the Imaging Problem 539
21.2.5.3 Methods for Solving the Inverse Problem 541
21.2.5.4 Challenges for Implementation 542
21.2.6 Diffusion of Light Correlations: Blood Flow 544
21.2.7 Contrast Agents 545
21.2.7.1 Fluorescent Contrast Agents 545
21.2.7.2 Differential Absorption 545
21.3 Instrumentation 546
21.3.1 Source Encoding Strategies 547
21.3.1.1 Continuous-Wave Imaging System 548
21.3.1.2 Frequency-Domain Imaging System 549
21.3.1.3 Time-Domain Imaging System 549
21.4 Experimental Diffuse Optical Tomography: Functional Breast and Brain Imaging 549
21.4.1 Multiple Absorbers in a Slab Phantom 550
21.4.2 Breast Imaging 552
21.4.2.1 Endogenous Properties of Normal Breast 553
21.4.2.2 Clinical Optical Images of Breast Lesions 554
21.4.2.3 Contrast Agents to Enhance Breast Lesion Detection 555
21.4.3 Diffuse Optical Imaging of Brain Function 557
21.4.3.1 Flow and Blood Oxygen Saturation Images of Rat Stroke 558
21.4.3.2 Activation Imaging of Brain Function in a Rat Model 558
21.4.3.3 Images of Brain Function in Humans 560
21.5 Fundamental and Practical Issues: Problems and Solutions 561
21.5.1 Detection, Localization, Characterization, and Resolution Limits 561
21.5.2 Calibration of Source and Detector Amplitudes 562
Acknowledgments 564
References 564
1116_C22 577
Biomedical Photonics Handbook 577
Table of Contents -1
Chapter 22: Photon Migration Spectroscopy Frequency- Domain Techniques 577
22.1 Photon Migration Spectroscopy 577
22.1.1 What Is Photon Migration Spectroscopy? 577
22.1.2 Historical Development 578
22.2 Working in the Frequency Domain 578
22.2.1 The Basics of the Frequency-Domain Method 578
22.2.2 The Need for the Frequency Domain 580
22.3 Frequency-Domain Solution to the Diffusion Equation 581
22.3.1 General Transport of Light in Turbid Media 581
22.3.2 The P1 Approximation: Infinite Medium Solution 581
22.3.2.1 Formal Theory 581
22.3.2.2 Frequency Dependence 582
22.3.2.3 Diffusion Wavelength 583
22.3.3 The P1 Approximation: Semi-Infinite Medium Solution 583
22.3.3.1 Changes in the Theory 583
22.3.3.2 Sensitivity to the Optical Properties 584
22.3.4 The Standard Diffusion Equation 584
22.3.5 Measurements of PDW 586
22.4 Frequency-Domain Instrumentation 587
22.4.1 The Frequency-Domain Instrument 587
22.4.2 The Frequency-Domain Source 587
22.4.2.1 Internal Modulation 587
22.4.2.2 External Modulation 588
22.4.3 The Frequency-Domain Detector 589
22.4.3.1 Signal Detection 589
22.4.3.2 Photoemissive Detectors 589
22.4.3.3 Solid-State Detectors 589
22.5 Current Clinical Examples 590
22.5.1 Breast Spectroscopy 590
22.5.1.1 Past Efforts 590
22.5.1.2 New Contributions 590
22.5.2 Functional Brain Monitoring 590
22.5.3 Measurements of Tissue Physiology 591
22.5.3.1 Deep-Tissue Arterial and Venous Oximetry 591
22.5.3.2 Monitoring Photodynamic Therapy Response 591
Acknowledgments 591
References 592
1116_C23 594
Biomedical Photonics Handbook 594
Table of Contents -1
Chapter 23: Atomic Spectrometry in Biological and Clinical Analysis 594
23.1 Atomic Spectrometry: Introduction 594
23.2 Atomic Spectrometry: Principles 595
23.3 Atomic Spectrometry: Instrumentation 597
23.3.1 Flame Atomizers 597
23.3.2 Electrothermal Atomizers 598
23.3.3 Inductively Coupled Plasmas 598
23.3.4 X-Ray Fluorescence 598
23.4 Atomic Spectrometry: Sample Preparation 599
23.5 Atomic Spectrometry: Recent Developments and Applications 600
23.5.1 Atomic Emission Spectrometry 600
23.5.2 Atomic Absorption Spectrometry 601
23.5.3 Atomic Fluorescence Spectrometry 602
23.5.4 Vapor Generation Procedures 602
23.5.5 X-Ray Fluorescence Spectrometry 603
23.6 Atomic Spectrometry: Quality Assurance 604
References 604
1116_C24 608
Biomedical Photonics Handbook 608
Table of Contents -1
Chapter 24: Capillary Electrophoresis Techniques in Biomedical Analysis 608
24.1 Overview 608
24.2 Capillary Electrophoresis Basics 609
24.2.1 Capillary Zone Electrophoresis 609
24.2.1.1 Fundamentals 609
24.2.1.2 Practical Considerations 611
24.2.2 Biomedically Significant Variations on the Capillary Electrophoresis Theme 612
24.2.3 Additional Capillary Electrophoresis Separation Modes 615
24.3 Applications of Photonics to Capillary Electrophoresis 616
24.3.1 Detection of Native Analytes 616
24.3.1.1 UV/VIS Absorbance 617
24.3.1.2 Native Fluorescence 617
24.3.1.3 Additional Detection Methods 618
24.3.2 Detection Involving Reactions and Indirect Methods 619
24.3.2.1 Derivatization (Fluorescence Labeling) in LIF 619
24.3.2.2 Indirect Detection 621
24.3.2.3 Chemiluminescence Detection 622
24.3.3 Information-Rich Photonic Detection 622
24.3.4 Optically Gated Injection 625
24.4 Biomedical Applications 625
24.4.1 Analysis of Substance P Metabolites in Microdialysis Samples 626
24.4.2 Capillary Electrophoretic Enzyme Inhibition Assays 627
References 629
1116_C25 635
Biomedical Photonics Handbook 635
Table of Contents -1
Chapter 25: Flow Cytometry 635
25.1 Introduction 635
25.2 Hardware 635
25.2.1 Fluidics 636
25.2.2 Optics 636
25.2.3 Electronics 637
25.2.4 Cell Sorting with Cloning 638
25.3 Data Analysis 638
25.4 Flow Cytometry Measurements 639
25.5 Biological Applications 640
25.5.1 Cell Cycle and Cell Proliferation 640
25.5.2 Ca-Flux 640
25.5.3 Cellular Antigen Quantitation 640
25.6 Clinical Flow Cytometry Applications 640
25.6.1 T-Cell Subset Analysis for HIV Disease 640
25.6.2 Blood Banking 643
25.6.3 Cancer 644
25.7 Clinical Microbiology 644
25.8 Biological and Medical Research 644
25.8.1 Antigen-Specific T Cells and Immune Function in Infectious Diseases 644
25.8.2 Measurement of Soluble Analytes Using Multiplex Bead Assays 645
25.8.3 Other Cell Function Assays (Phagocytosis, Oxidative Burst, Basophils) 646
25.8.4 Thermodynamic and Kinetic Analysis of Binding Phenomena 647
25.8.5 Molecular and Cellular Biology Research, Genomics, and Proteomics 648
25.6 Industrial and Environmental Cytometry 648
References 649
1116_C26 655
Biomedical Photonics Handbook 655
Table of Contents -1
Chapter 26: X- Ray Diagnostic Techniques 655
Overview 655
26.1 Biological Tissue–X-Ray Interaction and Tissue Contrast 655
26.1.1 Attenuation-Based Tissue Contrast 655
26.1.2 Phase-Based Tissue Contrast 658
26.2 X-Ray Spectra and Exposure Control 659
26.2.1 Bremstrahlung and Characteristic Radiation 659
26.2.2 X-Ray Tubes 661
26.2.3 X-Ray Generators 663
26.3 Projection X-Ray Imaging 667
26.3.1 Conventional Radiography 667
26.3.2 Digital Radiography 668
26.3.3 Image Intensifier TV Chain and Fluoroscopy 674
26.3.4 Signal-to-Noise Ratio Analysis 677
26.4 Phase Contrast X-Ray Imaging 682
Acknowledgments 686
References 687
1116_C27 689
Biomedical Photonics Handbook 689
Table of Contents -1
Chapter 27: Optical Pumping and MRI of Hyperpolarized Spins 689
27.1 Introduction 689
27.2 MRI Basics 690
27.2.1 Nuclear Magnetism 690
27.2.2 Magnetic Resonance 691
27.2.3 Spin Relaxation, Tissue Characteristics, and Bloch Equation 692
27.2.4 Mapping Spatial Distribution of Spins 693
27.3 Nuclear Spin Hyperpolarization by Optical Pumping 695
27.3.1 Optical Depopulation Pumping of Alkali–Metal Atoms 696
27.3.2 Atomic States of Rubidium 697
27.3.3 Selective Absorption of Circularly Polarized Light 697
27.3.4 De-Excitation of Rb Atoms and Ground State Polarization 698
27.3.5 Optical Pumping Dynamics and the Generalized Bloch Equation 699
27.3.6 Spin Exchange and Hyperpolarized Nuclear Spins 701
27.3.7 Laser Source Considerations 702
27.4 MRI of Hyperpolarized He and Xe 704
27.4.1 Signal Intensities 705
27.4.2 General Considerations for He and Xe as MRI Contrast Media 706
27.4.3 Signal-to-Noise Ratio and Magnetic Field Strength 707
27.4.4 Pulse Sequence Considerations 708
27.4.5 Hyperpolarized Spin Relaxation 711
27.4.6 MRI of Hyperpolarized He and Xe for Human Subjects 713
Acknowledgments 714
References 714
1116_C28 717
Biomedical Photonics Handbook 717
Table of Contents -1
Section V: Biomedical Diagnostics II: Optical Biopsy 717
Chapter 28: Fluorescence Spectroscopy for Biomedical Diagnostics 718
28.1 Introduction 718
28.2 Principles of Fluorescence Spectroscopy 719
28.2.1 Fluorescence Techniques 719
28.2.2 Photophysical Basis of Luminescence 720
28.2.2.1 Molecular Electronic Energies 720
28.2.2.2 Population of the Excited Electronic States 721
Absorption (A) 721
Vibrational Relaxation (VR) 722
Internal Conversion (IC) 722
Fluorescence (F) 722
Intersystem Crossing (ISC) 723
Phosphorescence and the Triplet State 723
Spin–Orbit Coupling 723
General Considerations for Nonradiative Properties 724
Delayed Fluorescence (DF) 724
28.3 Characterization of Luminescence 725
28.3.1 Emission, Excitation, and Synchronous Spectra 725
28.3.2 Quantum Yields 725
28.3.3 Lifetimes 726
28.3.4 Polarization 727
28.4 Biomedical Applications 727
28.4.1 Biochemical Analysis of Individual Species 728
28.4.1.1 Endogenous Fluorophores 728
28.4.1.2 Exogenous Fluorophores and Molecular Markers 730
28.4.2 Analyses and Diagnostics 731
28.4.2.1 Cellular Analyses 732
28.4.2.1.1 Autofluorescence of Cells 732
28.4.1.1.2 Cellular Fluorescence Using Exogenous Dyes 734
28.4.2.2 Tissue Analyses and Diagnostics 736
28.4.2.2.1 Autofluorescence of Tissues 736
28.4.2.2.2 Tissue Analysis Using Exogenous Dyes 742
28.4.3 Analyses and Diagnostics 742
28.4.3.1 Animal Studies 742
28.4.3.1.1 Animal Studies Using Autofluorescence 743
28.4.3.1.2 Animal Studies Using Exogenous Dyes 744
28.4.3.2 Human Studies and Clinical Diagnostics 747
28.4.3.2.1 Clinical Studies and Diagnostics Using Autofluorescence 747
28.4.3.2.2 Clinical Studies and Diagnostics Using Exogenous Dyes 754
28.5 Conclusion 757
Acknowledgments 758
References 758
1116_C29 768
Biomedical Photonics Handbook 768
Table of Contents -1
Chapter 29: Elastic- Scattering Spectroscopy and Diffuse Reflectance 768
29.1 Basic Concepts 768
29.2 Clinical Studies 772
29.3 Increasing Sensitivity to Structures of Interest 775
29.4 Understanding the Origins of Light Sc
Alternative filename
lgli/D:\!Genesis\!!ForLG\2091491-Biomedical Engineering Биомедицинская инженерия - сборник кни\CRC Press - Biomedical Photonics Handbook.pdf
Alternative filename
lgrsnf/D:\!Genesis\!!ForLG\2091491-Biomedical Engineering Биомедицинская инженерия - сборник кни\CRC Press - Biomedical Photonics Handbook.pdf
Alternative filename
nexusstc/Biomedical Photonics Handbook/bf73b55f61c1ebc09d7a5a048ef67d68.pdf
metadata comments
torrents.ru tech collections 2009-11-14
metadata comments
lg224811
metadata comments
producers:
Acrobat Distiller 5.0.5 (Windows)
Acrobat Distiller 5.0.5 (Windows)
metadata comments
{"last_page":1787,"publisher":"CRC Press"}
date open sourced
2010-02-18
🚀 Fast downloads
Become a member to support the long-term preservation of books, papers, and more. To show our gratitude for your support, you get fast downloads. ❤️
- Fast Partner Server #1 (recommended)
- Fast Partner Server #2 (recommended)
- Fast Partner Server #3 (recommended)
- Fast Partner Server #4 (recommended)
- Fast Partner Server #5 (recommended)
- Fast Partner Server #6 (recommended)
- Fast Partner Server #7
- Fast Partner Server #8
- Fast Partner Server #9
- Fast Partner Server #10
- Fast Partner Server #11
- Fast Partner Server #12
🐢 Slow downloads
From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)
- Slow Partner Server #1 (slightly faster but with waitlist)
- Slow Partner Server #2 (slightly faster but with waitlist)
- Slow Partner Server #3 (slightly faster but with waitlist)
- Slow Partner Server #4 (slightly faster but with waitlist)
- Slow Partner Server #5 (no waitlist, but can be very slow)
- Slow Partner Server #6 (no waitlist, but can be very slow)
- Slow Partner Server #7 (no waitlist, but can be very slow)
- Slow Partner Server #8 (no waitlist, but can be very slow)
- Slow Partner Server #9 (no waitlist, but can be very slow)
- After downloading: Open in our viewer
All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
External downloads
-
For large files, we recommend using a download manager to prevent interruptions.
Recommended download managers: JDownloader -
You will need an ebook or PDF reader to open the file, depending on the file format.
Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre -
Use online tools to convert between formats.
Recommended conversion tools: CloudConvert and PrintFriendly -
You can send both PDF and EPUB files to your Kindle or Kobo eReader.
Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle” -
Support authors and libraries
✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
📚 If this is available at your local library, consider borrowing it for free there.
Total downloads:
A “file MD5” is a hash that gets computed from the file contents, and is reasonably unique based on that content. All shadow libraries that we have indexed on here primarily use MD5s to identify files.
A file might appear in multiple shadow libraries. For information about the various datasets that we have compiled, see the Datasets page.
For information about this particular file, check out its JSON file. Live/debug JSON version. Live/debug page.