Transcendental Aspects of Algebraic Cycles: Proceedings of the Grenoble Summer School, 2001 (London Mathematical Society Lecture Note Series, Series Number 313) 🔍
Mueller-Stach P., Peters C. (eds.) Cambridge University Press (Virtual Publishing), London Mathematical Society lecture note series -- 313, Cambridge, UK, New York, NY, England, 2004
English [en] · DJVU · 2.8MB · 2004 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
description
Topics range from introductory lectures on algebraic cycles to more advanced material in this collection of lecture notes from the Proceedings of the Grenoble Summer School, 2001. The advanced lectures are grouped under three headings: Lawson (co)homology, motives and motivic cohomology and Hodge theoretic invariants of cycles. As the lectures were intended for non-specialists, many examples have been included.
Alternative filename
lgli/M_Mathematics/MA_Algebra/MAg_Algebraic geometry/Mueller-Stach P., Peters C. (eds.) Transcendental aspects of algebraic cycles.. Proc. Grenoble school 2001 (LMSLN0313, CUP, 2004)(ISBN 0521545471)(600dpi)(K)(T)(308s)_MAg_.djvu
Alternative filename
lgrsnf/M_Mathematics/MA_Algebra/MAg_Algebraic geometry/Mueller-Stach P., Peters C. (eds.) Transcendental aspects of algebraic cycles.. Proc. Grenoble school 2001 (CUP, 2004)(ISBN 0521545471)(600dpi)(K)(T)(308s)_MAg_.djvu
Alternative filename
nexusstc/Transcendental aspects of algebraic cycles: Proc. Grenoble school 2001/c9a575d0cf8d58bf9a9bb4d6b81c75fa.djvu
Alternative author
Stefan Müller-Stach; Chris Peters; Grenoble Summer School
Alternative author
edited by S. Müller-Stach and C. Peters
Alternative author
Stefan J Müller-Stach
Alternative author
Müller-Stach, Stefan
Alternative edition
London mathematical society Lecture note series -- 313, Cambridge [etc.], United Kingdom, 2004
Alternative edition
London Mathematical Society lecture note series, 1. publ, Cambridge [u.a, 2004
Alternative edition
Cambridge University Press, Cambridge, 2004
Alternative edition
United Kingdom and Ireland, United Kingdom
metadata comments
Kolxo3 -- 2011
metadata comments
lg598927
metadata comments
{"isbns":["0521545471","9780521545471"],"last_page":308,"publisher":"Cambridge University Press","series":"London Mathematical Society Lecture Note Series"}
metadata comments
Includes bibliographical references
metadata comments
РГБ
metadata comments
Russian State Library [rgb] MARC:
=001 002708696
=003 OCoLC
=005 20051006153949.0
=008 030902s2004\\\\xxka\\\\\b\\\\100\0\eng\\
=016 7\ $a 011618738 $2 Uk
=017 \\ $a И9731-05
=020 \\ $a 0521545471 (pbk.)
=040 \\ $a RuMoRKP $b rus $e rcr $d RuMoRGB
=041 0\ $a eng
=044 \\ $a xxk
=084 \\ $a В152.3,0 $2 rubbk
=245 00 $a Transcendental aspects of algebraic cycles : $b proc. of the Grenoble Summer school, 2001 $c ed. by S. Müller-Stach a. C. Peters
=260 \\ $a Cambridge [etc.] $b Cambridge univ. press $c 2004
=300 \\ $a xix, 290 с. $b ил. $c 23 см
=490 0\ $a London mathematical society Lecture note series $v 313
=504 \\ $a Includes bibliographical references
=520 8\ $a Трансцедентальные аспекты алгебраических циклов. Материалы международного симпозиума
=650 \7 $a Физико-математические науки -- Математика -- Алгебра -- Высшая алгебра -- Группы. бесконечные группы -- Материалы конференций $2 rubbk
=700 1\ $a Müller-Stach, Stefan $d 1962- $e ред.
=773 18 $7 c2as $g 313 $a London mathematical society $t London mathematical society Lecture note series $d Cambridge : Cambridge univ. press, 1974- $h 23 см $x 0076-0552 $w 000864937
=852 4\ $a РГБ $b FB $j 15 05-3/74 $x 90
Alternative description
This Is A Collection Of Lecture Notes From The Summer School 'cycles Algébriques; Aspects Transcendents, Grenoble 2001'. The Topics Range From Introductory Lectures On Algebraic Cycles To More Advanced Material. The Advanced Lectures Are Grouped Under Three Headings: Lawson (co)homology, Motives And Motivic Cohomology And Hodge Theoretic Invariants Of Cycles. Among The Topics Treated Are: Cycle Spaces, Chow Topology, Morphic Cohomology, Grothendieck Motives, Chow-künneth Decompositions Of The Diagonal, Motivic Cohomology Via Higher Chow Groups, The Hodge Conjecture For Certain Fourfolds, An Effective Version Of Nori's Connectivity Theorem, Beilinson's Hodge And Tate Conjecture For Open Complete Intersections. As The Lectures Were Intended For Non-specialists Many Examples Have Been Included To Illustrate The Theory. As Such This Book Will Be Ideal For Graduate Students Or Researchers Seeking A Modern Introduction To The State-of-the-art Theory In This Subject. Pt. I. Introductory Material -- 1. Chow Varieties, The Euler-chow Series And The Total Coordinating Ring / E. Javier Elizondo -- 2. Introduction To Lawson Homology / Chris Peters And Siegmund Kosarew -- Pt. Ii. Lawson (co)homology -- 3. Topological Properties Of The Algebraic Cycles Functor / Paulo Limo-filho -- Pt. Iii. Motives And Motivic Cohomology -- 4. Lectures On Motives / Jacob P. Murre -- 5. A Short Introduction To Higher Chow Groups / Philippe Elbaz-vincent -- Pt. Iv. Hodge Theoretic Invariants Of Cycles -- 6. Three Lectures On The Hodge Conjecture / James D. Lewis -- 7. Lectures On Nori's Connectivity Theorem / J. Nagel -- 8. Beilinson's Hodge And Tate Conjectures / Shuji Saito. Edited By S. Müller-stach And C. Peters. Collection Of Lecture Notes From The Summer School Cycles Algébriques: Aspects Transcendents, Grenoble 2001. Summer School In Mathematics Is Organized By The Institut Fourier. Includes Bibliographical References And Index.
Alternative description
Трансцедентальные аспекты алгебраических циклов. Материалы международного симпозиума
date open sourced
2011-07-22
Read more…

🐢 Slow downloads

From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)

All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
  • For large files, we recommend using a download manager to prevent interruptions.
    Recommended download managers: JDownloader
  • You will need an ebook or PDF reader to open the file, depending on the file format.
    Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre
  • Use online tools to convert between formats.
    Recommended conversion tools: CloudConvert and PrintFriendly
  • You can send both PDF and EPUB files to your Kindle or Kobo eReader.
    Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle”
  • Support authors and libraries
    ✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
    📚 If this is available at your local library, consider borrowing it for free there.