📄 New blog post: We finished the Chinese release
✕

Anna’s Archive

📚 The largest truly open library in human history. 📈 61,344,044 books, 95,527,824 papers — preserved forever.
AA 38TB
direct uploads
IA 304TB
scraped by AA
DuXiu 298TB
scraped by AA
Hathi 9TB
scraped by AA
Libgen.li 188TB
collab with AA
Z-Lib 77TB
collab with AA
Libgen.rs 82TB
mirrored by AA
Sci-Hub 90TB
mirrored by AA
⭐️ Our code and data are 100% open source. Learn more…
✕ Recent downloads:  
Home Home Home Home
Anna’s Archive
Home
Search
Donate
🧬 SciDB
FAQ
Account
Log in / Register
Account
Public profile
Downloaded files
My donations
Referrals
Explore
Activity
Codes Explorer
ISBN Visualization ↗
Community Projects ↗
Open data
Datasets
Torrents
LLM data
Stay in touch
Contact email
Anna’s Blog ↗
Reddit ↗
Matrix ↗
Help out
Improve metadata
Volunteering & Bounties
Translate ↗
Development
Anna’s Software ↗
Security
DMCA / copyright claims
Alternatives
annas-archive.li ↗
annas-archive.se ↗
annas-archive.org ↗
SLUM [unaffiliated] ↗
SLUM 2 [unaffiliated] ↗
SearchSearch DonateDonate
AccountAccount
Search settings
Order by
Advanced
Add specific search field
Content
Filetype open our viewer
more…
Access
Source
Language
more…
Display
Search settings
Download Journal articles Digital Lending Metadata
Results 201-250 (450+ total)
Algorithms for Measurement Invariance Testing: Contrasts and Connections Veronica Cole, Conor H. Lacey Cambridge University Press, Cambridge Elements, 2023
Latent variable models are a powerful tool for measuring many of the phenomena in which developmental psychologists are often interested. If these phenomena are not measured equally well among all participants, this would result in biased inferences about how they unfold throughout development. In the absence of such biases, measurement invariance is achieved; if this bias is present, differential item functioning (DIF) would occur. This Element introduces the testing of measurement invariance/DIF through nonlinear factor analysis. After introducing models which are used to study these questions, the Element uses them to formulate different definitions of measurement invariance and DIF. It also focuses on different procedures for locating and quantifying these effects. The Element finally provides recommendations for researchers about how to navigate these options to make valid inferences about measurement in their own data.
Read more…
English [en] · PDF · 3.9MB · 2023 · 📘 Book (non-fiction) · 🚀/zlib · Save
base score: 11065.0, final score: 167511.77
Gradually, Then Suddenly –A Framework for Understanding Bitcoin as Money Parker A. Lewis Gradually Then Suddenly, LLC, 2023
Gradually, Then Suddenly is a framework for understanding bitcoin as money. The mistake most people make is never endeavoring to begin the journey, thinking that bitcoin is too difficult to understand to even try in the first place. Bitcoin ultimately solves the problem of printing money, and it is not an IQ test. Gradually, Then Suddenly is designed to help anyone curious about bitcoin develop an intuitive understanding, in a way that is accessible to a non-technical audience.By the end, the reader will have the foundation to think through all the confounding questions about bitcoin, with linear and logical thought processes. The only way to consistently arrive at the same conclusion about anything is through reason and logic, and the same is true of bitcoin. The reader will come away with answers to the questions as to why bitcoin exists and how it works, enough so to credibly apply their own logic and to reach their own conclusions as to whether bitcoin really does obsolete all other money.
Read more…
English [en] · MOBI · 1.6MB · 2023 · 📘 Book (non-fiction) · 🚀/zlib · Save
base score: 11055.0, final score: 167511.77
nexusstc/Algorithms for Programmers/7af2f29df13e67ceef8715bdeb6e41be.pdf
Algorithms for Programmers Arndt J 2002
Algorithms for Programmers......Page 1 Contents......Page 2 Some Important Remarks......Page 7 List of Important Symbols......Page 8 1.1 Discrete Fourier Transform......Page 9 1.2 Symmetries of Fourier transform......Page 10 1.3.2 Decimation in time (DIT) FFT......Page 11 1.3.3 Decimation in frequency (DIF) FFT......Page 14 1.4 Saving Trigonometric Computations......Page 16 1.4.2 Recursive generation of the sin=cos-values......Page 17 1.5.2 Decimation in time......Page 18 1.5.3 Decimation in frequency......Page 19 1.5.4 Implementation of radix r = px DIF/DIT FFTs......Page 20 1.6 Split Radix Fourier Transforms (SRFT)......Page 23 1.7 Inverse FFT for Free......Page 24 1.8 Real Valued Fourier Transforms......Page 25 1.8.1 Real valued FT via wrapper routines......Page 26 1.8.2 Real valued split radix Fourier transforms......Page 28 1.9.2 The row column algorithm......Page 32 1.10 Matrix Fourier Algorithm (MFA)......Page 33 1.11 Automatic Generation of FFT Codes......Page 34 2.1 Definition & Computation via FFT......Page 37 2.2 Mass Storage Convolution using MFA......Page 41 2.3 Weighted Fourier Transforms......Page 43 2.5 Convolution using MFA......Page 45 2.5.2 The case R = 3......Page 46 2.7 Convolution without Transposition using MFA......Page 47 2.8.1 Definition of the ZT......Page 48 2.8.4 Fractional Fourier transform by ZT......Page 49 3.2.1 Decimation in time (DIT) FHT......Page 50 3.2.2 Decimation in frequency (DIF) FHT......Page 53 3.3 Complex FT by HT......Page 56 3.4 Complex FT by Complex HT & Vice Versa......Page 57 3.5 Real FT by HT & Vice Versa......Page 58 3.6 Discrete Cosine Transform (DCT) by HT......Page 59 3.7 Discrete Sine Transform (DST) by DCT......Page 60 3.8 Convolution via FHT......Page 61 3.9 Negacyclic Convolution via FHT......Page 63 4.1 Prime Modulus: Z/pZ = Fp......Page 64 4.2 Composite Modulus: Z/mZ......Page 65 4.3.1 Radix 2 DIT NTT......Page 68 4.3.2 Radix 2 DIF NTT......Page 69 4.5 Chinese Remainder Theorem (CRT)......Page 70 4.6 A Modular Multiplication Technique......Page 72 4.7 Number-Theoretic Hartley Transform......Page 73 Ch5 Walsh Transforms......Page 74 5.1 Basis Functions of Walsh Transforms......Page 78 5.2 Dyadic Convolution......Page 79 5.3 Slant transform......Page 81 Ch6 Haar transform......Page 83 6.1 In-Place Haar Transform......Page 84 6.2 Integer to Integer Haar Transform......Page 87 7.1 Trivia......Page 89 7.2 Operations on Low Bits/Blocks in a Word......Page 90 7.3 Operations on High Bits/Blocks in a Word......Page 92 7.4 Functions Related to Base-2 Logarithm......Page 95 7.5 Counting Bits in a Word......Page 96 7.6 Swapping Bits/Blocks of a Word......Page 97 7.7 Reversing Bits of a Word......Page 99 7.8 Generating Bit Combinations......Page 100 7.10 Bit Set Lookup......Page 102 7.11 Gray Code of a Word......Page 103 7.12 Generating Minimal-Change Bit Combinations......Page 105 7.13 Bitwise Rotation of a Word......Page 107 7.14 Bitwise Zip......Page 109 7.15 Bit Sequency......Page 110 7.16 Misc......Page 111 7.17 Bitarray Class......Page 113 7.18 Manipulation of Colors......Page 114 8.1.1 A naive version......Page 116 8.1.3 How many swaps?......Page 117 8.1.4 A still faster version......Page 118 8.1.5 The real world version......Page 120 8.2 Radix Permutation......Page 121 8.3 In-Place Matrix Transposition......Page 122 8.4.1 Rotate and reverse......Page 123 8.4.2 Zip and unzip......Page 124 8.5 Gray Code Permutation......Page 125 8.6.1 Basic definitions......Page 128 8.6.2 Compositions of permutations......Page 129 8.6.3 Applying permutations to data......Page 132 8.7.1 Lexicographic order......Page 133 8.7.2 Minimal-change order......Page 135 8.7.3 Derangement order......Page 137 8.7.4 Star-transposition order......Page 138 8.7.5 Yet another order......Page 139 9.1 Sorting......Page 141 9.2 Searching......Page 143 9.3 Index Sorting......Page 144 9.4 Pointer Sorting......Page 145 9.5 Sorting by Supplied Comparison Function......Page 146 9.6 Unique......Page 147 9.7 Misc......Page 149 10.1 Offline Functions: funcemu......Page 153 10.2 Combinations in Lexicographic Order......Page 156 10.3 Combinations in Co-Lexicographic Order......Page 158 10.4 Combinations in Minimal-Change Order......Page 159 10.5 Combinations in Alternative Minimal-Change Order......Page 161 10.6 Subsets in Lexicographic Order......Page 162 10.7 Subsets in Minimal-Change Order......Page 164 10.8 Subsets Ordered by Number of Elements......Page 166 10.9 Subsets Ordered with Shift Register Sequences......Page 167 10.10 Partitions......Page 168 11.2 Multiplication of Large Numbers......Page 171 11.2.2 Fast Multiplication via FFT......Page 172 11.2.3 Radix/Precision Considerations with FFT Multiplication......Page 174 11.3.1 Division......Page 175 11.3.2 Square root extraction......Page 176 11.4 Square Root Extraction for Rationals......Page 177 11.5 General Procedure for Inverse n-th Root......Page 179 11.6 Re-Orthogonalization of Matrices......Page 181 11.7 n-th Root by Goldschmidt's Algorithm......Page 182 11.8 Iterations for Inversion of Function......Page 183 11.8.1 Householder's formula......Page 184 11.8.2 Schroeder's formula......Page 185 11.8.3 Dealing with multiple roots......Page 186 11.8.4 A general scheme......Page 187 11.8.5 Improvements by the delta squared process......Page 189 11.9.1 AGM......Page 190 11.9.2 log......Page 192 11.9.3 exp......Page 193 11.9.6 Elliptic E......Page 194 11.10 Computation of pi/log(q)......Page 195 11.11 Iterations for High Precison Computations of pi......Page 196 11.12 Binary Splitting Algorithm for Rational Series......Page 201 11.13 Magic Sumalt Algorithm......Page 203 11.14 Continued Fractions......Page 205 App A Summary of Definitions of FTs......Page 207 AppB Pseudo Language Sprache......Page 209 AppC Optimization Considerations for Fast Transforms......Page 212 AppD Properties of ZT......Page 213 AppE Eigenvectors of Fourier Transform......Page 215 Bibliography......Page 216 Index......Page 219
Read more…
English [en] · PDF · 1.3MB · 2002 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11063.0, final score: 167511.77
nexusstc/Practical mod\_perl/587a0d19195c30940c800372708dfb0d.pdf
Practical mod\_perl Stas Bekman, Eric Cholet O'Reilly Media, O'REILLY
English [en] · PDF · 0.5MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11052.0, final score: 167511.66
Your ad here.
lgli/978-3-98547-566-7.pdf
The Universal Coefficient Theorem for C*-Algebras with Finite Complexity Rufus Willett, Guoliang Yu European Mathematical Society - EMS - Publishing House. EMS Press, MEMS, 8, 2024
A C ∗ -algebra satisfies the Universal Coefficient Theorem (UCT) of Rosenberg and Schochet if it is equivalent in Kasparov's KK-theory to a commutative C ∗ -algebra. This paper is motivated by the problem of establishing the range of validity of the UCT, and in particular, whether the UCT holds for all nuclear C ∗ -algebras.
Read more…
English [en] · PDF · 0.7MB · 2024 · 📘 Book (non-fiction) · 🚀/lgli/zlib · Save
base score: 11063.0, final score: 167511.66
nexusstc/Competitive Programming 1/f474ec81175c8f0343053309233ef819.pdf
Competitive Programming 1 1 Steven Halim, Felix Halim 1, 0
First Edition of Competitive programming- covering topics over competitive programming
Read more…
English [en] · PDF · 5.3MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11063.0, final score: 167511.66
Learning Algorithms for Internet of Things: Applying Python Tools to Improve Data Collection Use for System Performance G. R. Kanagachidambaresan, N. Bharathi Apress L. P., 1, 2024
This book describes learning algorithms that can be applied to IoT-based, real-time applications and improve the utilization of data collected and the overall performance of the system. The advent of Internet of Things (IoT) has paved the way for sensing the environment and smartly responding. This can be further improved by enabling intelligence to the system with the support of machine learning and deep learning techniques. Many societal challenges and problems can be resolved using a better amalgamation of IoT and learning algorithms. “Smartness” is the buzzword that is realized only with the help of learning algorithms. This book provides readers with an easier way to understand the purpose and application of learning algorithms on IoT. In addition, it supports researchers with code snippets that focus on the implementation and performance of learning algorithms on IoT based applications such as healthcare, agriculture, transportation, etc. What you’lllearn Machine learning, deep learning, and genetic learning algorithms for IoT. Python packages for learning algorithms, such as Scipy, Scikit-learn, Theano, TensorFlow, Keras, PyTorch and more. Supervised algorithms such as Regression and Classification. Unsupervised algorithms, like K-means clustering, KNN, hierarchical clustering, principal component analysis, and more. Artificial neural networks for IoT (architecture, feedback, feed-forward, unsupervised). Convolutional neural networks for IoT (general, LeNet, AlexNet, VGGNet, GoogLeNet, etc.). Optimization methods, such as gradient descent, stochastic gradient descent, Adagrad, AdaDelta, and IoT optimization. Who This Book Is For The audience includes students interested in learning algorithms and their implementations, as well as researchers in IoT looking to extend their work with learning algorithms.
Read more…
English [en] · PDF · 3.6MB · 2024 · 📘 Book (non-fiction) · 🚀/zlib · Save
base score: 11065.0, final score: 167511.66
nexusstc/Approximation algorithms/d3505ab963f5ab1534c97692a7b7b3cf.pdf
Approximation algorithms Vijay V. Vazirani Springer, Corrected, 2001
Approximation algorithms are currently a central and fast-developing area of research in theoretical computer science. This monograph covers the basic techniques used in the latest research work, techniques that everyone in the field should know, and shows that they form the beginnings of a promising theory. The author consolidates progress made so far, including some very recent results, and makes a strong effort to convey the beauty and excitement of work in the field.
Read more…
English [en] · PDF · 0.9MB · 2001 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11060.0, final score: 167511.66
nexusstc/Balancing and Sequencing of Assembly Lines/48fff81191ab4a5737f229e6b6c41a19.pdf
Balancing and Sequencing of Assembly Lines Armin Scholl 0
English [en] · PDF · 10.3MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11060.0, final score: 167510.9
Your ad here.
nexusstc/Digital Image Warping/63e7d8db5d7a571f8d2e869d6e0fb35e.pdf
Digital Image Warping George Wolberg IEEE, 1990
English [en] · PDF · 5.5MB · 1990 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11062.0, final score: 167510.9
nexusstc/Mathematics for Computer Science/a71435dfb6a33a412906880cd6b6a285.pdf
Mathematics for Computer Science Eric Lehman, F Thomson Leighton, Albert R Meyer 2017
Contents I Proofs Introduction 3 0.1 References 4 1 What is a Proof? 5 1.1 Propositions 5 1.2 Predicates 8 1.3 The Axiomatic Method 8 1.4 Our Axioms 9 1.5 Proving an Implication 11 1.6 Proving an “If and Only If” 13 1.7 Proof by Cases 15 1.8 Proof by Contradiction 16 1.9 Good Proofs in Practice 17 1.10 References 19 2 The Well Ordering Principle 29 2.1 Well Ordering Proofs 29 2.2 Template for Well Ordering Proofs 30 2.3 Factoring into Primes 32 2.4 Well Ordered Sets 33 3 Logical Formulas 45 3.1 Propositions from Propositions 46 3.2 Propositional Logic in Computer Programs 50 3.3 Equivalence and Validity 52 3.4 The Algebra of Propositions 55 3.5 The SAT Problem 60 3.6 Predicate Formulas 61 3.7 References 66 4 Mathematical Data Types 91 4.1 Sets 91 4.2 Sequences 96 4.3 Functions 97 4.4 Binary Relations 99 4.5 Finite Cardinality 103 5 Induction 123 5.1 Ordinary Induction 123 5.2 Strong Induction 132 5.3 Strong Induction vs. Induction vs. Well Ordering 139 6 State Machines 159 6.1 States and Transitions 159 6.2 The Invariant Principle 160 6.3 Partial Correctness & Termination 168 6.4 The Stable Marriage Problem 173 7 Recursive Data Types 203 7.1 Recursive Definitions and Structural Induction 203 7.2 Strings of Matched Brackets 207 7.3 Recursive Functions on Nonnegative Integers 211 7.4 Arithmetic Expressions 213 7.5 Induction in Computer Science 218 8 Infinite Sets 245 8.1 Infinite Cardinality 246 8.2 The Halting Problem 255 8.3 The Logic of Sets 259 8.4 Does All This Really Work? 262 II Structures Introduction 287 9 Number Theory 289 9.1 Divisibility 289 9.2 The Greatest Common Divisor 294 9.3 Prime Mysteries 301 9.4 The Fundamental Theorem of Arithmetic 303 9.5 Alan Turing 306 9.6 Modular Arithmetic 310 9.7 Remainder Arithmetic 312 9.8 Turing’s Code (Version 2.0) 315 9.9 Multiplicative Inverses and Cancelling 317 9.10 Euler’s Theorem 321 9.11 RSA Public Key Encryption 326 9.12 What has SAT got to do with it? 328 9.13 References 329 10 Directed graphs & Partial Orders 367 10.1 Vertex Degrees 369 10.2 Walks and Paths 370 10.3 Adjacency Matrices 373 10.4 Walk Relations 376 10.5 Directed Acyclic Graphs & Scheduling 377 10.6 Partial Orders 385 10.7 Representing Partial Orders by Set Containment 389 10.8 Linear Orders 390 10.9 Product Orders 390 10.10 Equivalence Relations 391 10.11 Summary of Relational Properties 393 11 Communication Networks 425 11.1 Routing 425 11.2 Routing Measures 426 11.3 Network Designs 429 12 Simple Graphs 445 12.1 Vertex Adjacency and Degrees 445 12.2 Sexual Demographics in America 447 12.3 Some Common Graphs 449 12.4 Isomorphism 451 12.5 Bipartite Graphs & Matchings 453 12.6 Coloring 458 12.7 Simple Walks 463 12.8 Connectivity 465 12.9 Forests & Trees 470 12.10 References 478 13 Planar Graphs 517 13.1 Drawing Graphs in the Plane 517 13.2 Definitions of Planar Graphs 517 13.3 Euler’s Formula 528 13.4 Bounding the Number of Edges in a Planar Graph 529 13.5 Returning to K5 and K3;3 530 13.6 Coloring Planar Graphs 531 13.7 Classifying Polyhedra 533 13.8 Another Characterization for Planar Graphs 536 III Counting Introduction 545 14 Sums and Asymptotics 547 14.1 The Value of an Annuity 548 14.2 Sums of Powers 554 14.3 Approximating Sums 556 14.4 Hanging Out Over the Edge 560 14.5 Products 566 14.6 Double Trouble 569 14.7 Asymptotic Notation 572 15 Cardinality Rules 597 15.1 Counting One Thing by Counting Another 597 15.2 Counting Sequences 598 15.3 The Generalized Product Rule 601 15.4 The Division Rule 605 15.5 Counting Subsets 608 15.6 Sequences with Repetitions 610 15.7 Counting Practice: Poker Hands 613 15.8 The Pigeonhole Principle 618 15.9 Inclusion-Exclusion 627 15.10 Combinatorial Proofs 633 15.11 References 637 16 Generating Functions 675 16.1 Infinite Series 675 16.2 Counting with Generating Functions 677 16.3 Partial Fractions 683 16.4 Solving Linear Recurrences 686 16.5 Formal Power Series 691 16.6 References 694 IV Probability Introduction 713 17 Events and Probability Spaces 715 17.1 Let’s Make a Deal 715 17.2 The Four Step Method 716 17.3 Strange Dice 725 17.4 The Birthday Principle 732 17.5 Set Theory and Probability 734 17.6 References 738 18 Conditional Probability 747 18.1 Monty Hall Confusion 747 18.2 Definition and Notation 748 18.3 The Four-Step Method for Conditional Probability 750 18.4 Why Tree Diagrams Work 752 18.5 The Law of Total Probability 760 18.6 Simpson’s Paradox 762 18.7 Independence 764 18.8 Mutual Independence 766 18.9 Probability versus Confidence 770 19 Random Variables 799 19.1 Random Variable Examples 799 19.2 Independence 801 19.3 Distribution Functions 802 19.4 Great Expectations 811 19.5 Linearity of Expectation 822 20 Deviation from the Mean 853 20.1 Markov’s Theorem 853 20.2 Chebyshev’s Theorem 856 20.3 Properties of Variance 860 20.4 Estimation by Random Sampling 866 20.5 Confidence in an Estimation 869 20.6 Sums of Random Variables 871 20.7 Really Great Expectations 880 21 Random Walks 905 21.1 Gambler’s Ruin 905 21.2 Random Walks on Graphs 915 V Recurrences Introduction 933 22 Recurrences 935 22.1 The Towers of Hanoi 935 22.2 Merge Sort 938 22.3 Linear Recurrences 942 22.4 Divide-and-Conquer Recurrences 949 22.5 A Feel for Recurrences 956 Bibliography 963 Glossary of Symbols 967 Index 971
Read more…
English [en] · PDF · 13.5MB · 2017 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11063.0, final score: 167510.9
nexusstc/Woods Digital Image Processing/89ebf8a05fb6611f1cd0c51a01788f50.djvu
Woods Digital Image Processing Gonzales 2
English [en] · DJVU · 3.9MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11050.0, final score: 167510.9
nexusstc/Deep Learning [pre-pub version]/a05be4942325aea362e2aff8c305b0de.pdf
Deep Learning [pre-pub version] Ian Goodfellow, Yoshua Bengio, Aaron Courville MIT Press, 2016
The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. The print version will be available for sale soon.
Read more…
English [en] · PDF · 84.8MB · 2016 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.9
C# Data Structures and Algorithms - Second Edition: Harness the power of C# to build a diverse range of efficient applications Marcin Jamro Packt Publishing, Limited, 1, 2024
Harness the power of C# to build a diverse range of efficient applications
Read more…
English [en] · PDF · 40.3MB · 2024 · 📘 Book (non-fiction) · 🚀/zlib · Save
base score: 11065.0, final score: 167510.9
Your ad here.
lgli/Bob Mather - Coding For Kids, Programming For Beginners How To Learn Coding Skills, Create a Game, Programming in Python by Bob Mather (2021, ).epub
Coding For Kids, Programming For Beginners How To Learn Coding Skills, Create a Game, Programming in Python by Bob Mather Bob Mather Draft2Digital, 2021
Coding is not only a highly sought-after skill in our digital world, but it also teaches kids valuable skills for life after school. This book teaches important strategies for solving problems, designing projects, and communicating ideas, all while creating games to play with their friends.Children will enjoy the step-by-step visual approach that makes even the most difficult coding concepts easy to master. They will discover the fundamentals of computer programming and learn to code through a blend of coding theory and the practical task of building computer games themselves.The reason coding theory is taught through practical tasks is so that young programmers don't just learn how computer code works - they learn why it's done that way.interactive activities that teach them the basics of the Python programming language. From learning the essential building blocks of programming to creating their very own games, kids will progress through unique lessons packed with helpful examples―and a little silliness!Kids will follow along by starting to code (and debug their code) step by step, seeing the results of their coding in real time. Activities at the end of each chapter help test their new knowledge by combining multiple concepts. For young programmers who really want to show off their creativity, there are extra tricky challenges to tackle after each chapter. All kids need to get started is a computer and this book.This beginner's guide to Python for kids includes:Encourage kids to think independently and have fun learning an amazing new skill with this coding book for kids.With Coding Games in Scratch, kids can build single and multiplayer platform games, create puzzles and memory games, race through mazes, add animation, and more
Read more…
English [en] · EPUB · 2.4MB · 2021 · 📘 Book (non-fiction) · 🚀/lgli/zlib · Save
base score: 11068.0, final score: 167510.89
nexusstc/JavaScript Algorithms The Web Developer’s Guide to Data Structures and Algorithms/0947abf900dbe54cf8e2565f71f44eb8.pdf
JavaScript Algorithms The Web Developer’s Guide to Data Structures and Algorithms Oleksii Trekhleb and Sophia Shoemaker Fullstack, 2019
Table of Contents Book Revision EARLY RELEASE VERSION Join Our Discord Bug Reports Be notified of updates via Twitter We'd love to hear from you! PRE-RELEASE VERSION Join Our Discord Introduction How To Read This Book Algorithms and Their Complexities What is an Algorithm Algorithm Complexity Big O Notation Quiz Linked List Linked list and its common operations Applications Implementation Complexities Problems Examples Quiz References Queue Queue and its common operations When to use a Queue Usage Example Implementation Complexities Problems Examples Quiz References Stack Stack and its common operations Applications Usage Example Implementation Complexities Problems Examples Quiz References Hash Table Hash Function Collision Resolution Implementation Operations Time Complexity Problems Examples Quiz References Binary Search Tree (BST) Tree Binary Tree Binary Search Tree Application Basic Operations Usage Example Implementation Operations Time Complexity Problems Examples Quiz References Binary Heap Application Basic Operations Usage Example Implementation Complexities Problems Examples Quiz References Priority Queue Application Basic Operations Usage Example Implementation Complexities Problems Examples Quiz References Graphs Application Graph Representation Basic Operations Usage Example Implementation Operations Time Complexity Problems Examples Quiz References Bit Manipulation Applications Code Problems Examples Quiz References Factorial Intro Applications Recursion Code Problems Examples Quiz References Fibonacci Number Applications Code Problems Examples References Primality Test Applications Code Problems Examples Quiz References Is a power of two The Task Naive solution Bitwise solution Problems Examples Quiz References Search. Linear Search. The Task The Algorithm Application Usage Example Implementation Complexity Problems Examples Quiz References Search. Binary Search. The Task The Algorithm Algorithm Complexities Application Usage Example Implementation Problems Examples Quiz References Sets. Cartesian Product. Sets Cartesian Product Applications Usage Example Implementation Complexities Problems Examples Quiz References Sets. Power Set. Usage Example Implementation Complexities Problems Examples Quiz References Sets. Permutations. Permutations With Repetitions Permutations Without Repetitions Application Usage Example Implementation Problems Examples Quiz References Sets. Combinations. Combinations Without Repetitions Combinations With Repetitions Application Usage Example Implementation Problems Examples Quiz References Sorting: Quicksort The Task The Algorithm Usage Example Implementation Complexities Problems Examples Quiz References Trees. Depth-First Search. The Task The Algorithm Usage Example Implementation Complexities Problems Examples Quiz References Trees. Breadth-First Search. The Task The Algorithm Usage Example Implementation Complexities Problems Examples Quiz References Graphs. Depth-First Search. The Task The Algorithm Application Usage Example Implementation Complexities Problems Examples Quiz References Graphs. Breadth-First Search. The Task The Algorithm Application Usage Example Implementation Complexities Problems Examples Quiz References Dijkstra's Algorithm The Task The Algorithm Application Usage Example Implementation Complexities Problems Examples References Appendix A: Quiz Answers Appendix B: Big O Times Comparison Appendix C: Data Structures Operations Complexities Common Data Structures Operations Complexities Graph Operations Complexities Heap Operations Complexities Appendix D: Array Sorting Algorithms Complexities Changelog Revision 2 (11-25-2019) Revision 1 (10-29-2019)
Read more…
English [en] · PDF · 9.1MB · 2019 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.89
nexusstc/Software development & programming: Guide/68c35c90abf888a1739be8d461736eb8.pdf
Software development & programming: Guide Independent Independently published, 2023
Discover the fascinating world of software development in this comprehensive book. From the fundamentals of programming to cutting-edge technologies like IoT and AI, explore the building blocks of modern software. Learn about web development, databases, security, version control, and more, while uncovering the principles of good code design. Dive into the realm of mobile app development, big data analytics, and cloud computing. With practical tips on maintenance, refactoring, and balancing new features, this book equips you to thrive in the dynamic world of software development. Unlock your coding potential and shape the future of technology!
Read more…
English [en] · PDF · 70.4MB · 2023 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.89
Data Insight Foundations: Step-by-Step Data Analysis with R Nikita Tkachenko Apress L. P., 1, 2025
English [en] · PDF · 7.2MB · 2025 · 📘 Book (non-fiction) · 🚀/zlib · Save
base score: 11062.0, final score: 167510.89
C# Data Structures and Algorithms - Second Edition: Harness the power of C# to build a diverse range of efficient applications Jamro, Marcin Packt Publishing, Limited, 2nd ed., PS, 2024
Explore efficient data organization in C# with this guide to implementing and utilizing diverse data structures, along with common algorithms, offering reusable solutions for effective development.
Read more…
English [en] · PDF · 22.9MB · 2024 · 📘 Book (non-fiction) · 🚀/zlib · Save
base score: 11065.0, final score: 167510.89
Your ad here.
nexusstc/Thomas Weise Global Optimization Algorithms - Theory and Application 2Ed/deedc9ffd822014c7d8ca28bdc268eb4.pdf
Thomas Weise Global Optimization Algorithms - Theory and Application 2Ed Thomas Weise 2008
Preface......Page 3 Contents......Page 7 Part I Global Optimization......Page 17 Introduction......Page 19 Classification According to Method of Operation......Page 20 Classification According to Properties......Page 22 Single Objective Functions......Page 23 Multiple Objective Functions......Page 25 Weighted Sum......Page 27 Pareto Optimization......Page 29 The Method of Inequalities......Page 32 External Decision Maker......Page 34 Prevalence Optimization......Page 35 Spaces, Sets, and Elements......Page 37 Fitness Landscapes and Global Optimization......Page 45 Other General Features......Page 50 Premature Convergence and Multimodality......Page 53 Ruggedness and Weak Causality......Page 56 Neutrality and Redundancy......Page 59 Epistasis......Page 63 Overfitting and Oversimplification......Page 64 Robustness and Noise......Page 67 Dynamically Changing Fitness Landscape......Page 69 No Free Lunch Theorem......Page 70 Formae and Search Space/Operator Design......Page 71 Forma Analysis......Page 72 Genome Design......Page 74 Areas Of Application......Page 76 Conferences, Workshops, etc.......Page 77 Journals......Page 80 Books......Page 81 The Basic Principles from Nature......Page 83 Classification of Evolutionary Algorithms......Page 88 Areas Of Application......Page 92 Conferences, Workshops, etc.......Page 93 Online Resources......Page 96 Books......Page 97 Introduction......Page 98 Pareto Ranking......Page 99 Sharing Functions......Page 101 Variety Preserving Ranking......Page 103 Introduction......Page 108 Truncation Selection......Page 110 Fitness Proportionate Selection......Page 111 Tournament Selection......Page 116 Ordered Selection......Page 119 VEGA Selection......Page 121 Simple Convergence Prevention......Page 122 Reproduction......Page 124 NCGA Reproduction......Page 125 VEGA......Page 126 Introduction......Page 129 Areas Of Application......Page 130 Conferences, Workshops, etc.......Page 131 Books......Page 132 Genomes in Genetic Algorithms......Page 133 Mutation......Page 134 Crossover......Page 135 Crossover......Page 136 Schema Theorem......Page 137 Wildcards......Page 138 Criticism of the Schema Theorem......Page 139 The Building Block Hypothesis......Page 140 History......Page 141 Areas Of Application......Page 143 Conferences, Workshops, etc.......Page 144 Online Resources......Page 145 Creation......Page 146 Recombination......Page 147 Editing......Page 149 Wrapping......Page 150 Automatically Defined Functions......Page 151 Automatically Defined Macros......Page 152 Node Selection......Page 153 Cramer's Genetic Programming......Page 155 Gene Expression Programming......Page 156 Edge Encoding......Page 158 Trivial Approach......Page 161 Strongly Typed Genetic Programming......Page 162 Gads 1......Page 163 Grammatical Evolution......Page 165 Gads 2......Page 169 Christiansen Grammar Evolution......Page 170 Tree-Adjoining Grammar-guided Genetic Programming......Page 172 Linear Genetic Programming......Page 175 Parallel Algorithm Discovery and Orchestration......Page 177 Parallel Distributed Genetic Programming......Page 178 Genetic Network Programming......Page 180 Cartesian Genetic Programming......Page 181 Introduction......Page 183 Algorithmic Chemistry......Page 185 Rule-based Genetic Programming......Page 187 Soft Assignment......Page 193 Push, PushGP, and Pushpop......Page 194 Fraglets......Page 197 Restricting Problems......Page 200 Why No Exhaustive Testing?......Page 201 Non-Functional Features of Algorithms......Page 202 Areas Of Application......Page 205 (+)-ES......Page 206 Introduction......Page 207 General Information......Page 208 Areas Of Application......Page 209 Books......Page 210 Conferences, Workshops, etc.......Page 211 Messages......Page 212 Conditions......Page 214 Classifiers......Page 216 Non-Learning Classifier Systems......Page 217 The Bucket Brigade Algorithm......Page 218 Families of Learning Classifier Systems......Page 220 Introduction......Page 223 Multi-Objective Hill Climbing......Page 224 Problems in Hill Climbing......Page 225 Hill Climbing with Random Restarts......Page 226 Introduction......Page 227 Areas Of Application......Page 228 Introduction......Page 231 Temperature Scheduling......Page 233 Multi-Objective Simulated Annealing......Page 234 Areas Of Application......Page 237 The Downhill Simplex Algorithm......Page 238 Hybridizing with the Downhill Simplex......Page 240 Introduction......Page 243 Multi-Objective Tabu Search......Page 244 Introduction......Page 247 Online Resources......Page 248 Introduction......Page 251 Areas Of Application......Page 252 Books......Page 253 Memetic Algorithms......Page 255 Online Resources......Page 256 Books......Page 257 Introduction......Page 259 Breadth-First Search......Page 261 Depth-First Search......Page 262 Iterative Deepening Depth-First Search......Page 263 Random Walks......Page 264 Greedy Search......Page 265 Adaptive Walks......Page 266 Analysis......Page 269 Client-Server......Page 271 Island Model......Page 272 Cellular Genetic Algorithms......Page 275 Updating the Optimal Set......Page 277 Obtaining Optimal Elements......Page 278 Pruning the Optimal Set......Page 279 Adaptive Grid Archiving......Page 280 Part II Applications......Page 283 The Optimization Problem......Page 285 The Optimization Algorithm Applied......Page 286 Other Run Parameters......Page 287 Measures......Page 288 Simple Evaluation Measures......Page 289 Sophisticated Estimates......Page 291 Single-Objective Optimization......Page 293 Dynamic Fitness Landscapes......Page 294 Kauffman's NK Fitness Landscapes......Page 295 The p-Spin Model......Page 298 The Royal Road......Page 299 OneMax and BinInt......Page 303 Tunable Model for Problematic Phenomena......Page 304 Artificial Ant......Page 317 The Greatest Common Divisor......Page 319 Introduction......Page 331 The 2007 Contest -- Using Classifier Systems......Page 332 Introduction......Page 341 The 2006/2007 Semantic Challenge......Page 343 Genetic Programming: Genome for Symbolic Regression......Page 355 Sample Data, Quality, and Estimation Theory......Page 356 An Example and the Phenomenon of Overfitting......Page 357 Limits of Symbolic Regression......Page 359 Global Optimization of Distributed Systems......Page 361 Optimizing Network Topology and Dimensioning......Page 362 Optimizing Routing......Page 366 Synthesizing Protocols......Page 373 Optimizing Network Security......Page 377 Optimizing Parameters and Configurations......Page 378 Introduction......Page 379 Evolving Proactive Aggregation Protocols......Page 380 Part III Sigoa -- Implementation in Java......Page 403 Introduction......Page 405 Separation of Specification and Implementation......Page 406 Architecture......Page 407 Subsystems......Page 409 The Phenotype......Page 411 The Simulation......Page 412 The Objective Functions......Page 415 The Evolution Process......Page 417 Part IV Background......Page 419 Relations between Sets......Page 421 Operations on Sets......Page 422 Tuples......Page 424 Lists......Page 425 Binary Relations......Page 427 Functions......Page 428 Order Relations......Page 429 Equivalence Relations......Page 430 Probability......Page 431 Probabily as defined by Bernoulli (1713)......Page 432 The Axioms of Kolmogorov......Page 433 Conditional Probability......Page 434 Cumulative Distribution Function......Page 435 Probability Density Function......Page 436 Count, Min, Max and Range......Page 437 Variance and Standard Deviation......Page 438 Moments......Page 440 Median, Quantiles, and Mode......Page 441 Some Discrete Distributions......Page 443 Discrete Uniform Distribution......Page 444 Poisson Distribution......Page 445 Binomial Distribution B(n, p)......Page 448 Some Continuous Distributions......Page 449 Continuous Uniform Distribution......Page 450 Normal Distribution N(,2)......Page 451 Exponential Distribution exp()......Page 454 Chi-square Distribution......Page 455 Student's t-Distribution......Page 459 Example -- Throwing a Dice......Page 462 Estimation Theory......Page 464 Likelihood and Maximum Likelihood Estimators......Page 465 Confidence Intervals......Page 468 Density Estimation......Page 471 Generating Random Numbers......Page 473 Generating Pseudorandom Numbers......Page 474 Random Functions......Page 475 Converting Random Numbers to other Distributions......Page 476 Gamma Function......Page 480 Clustering......Page 481 Distance Measures for Real-Valued Vectors......Page 483 Cluster Error......Page 485 nth Nearest Neighbor Clustering......Page 486 Linkage Clustering......Page 487 Leader Clustering......Page 489 Algorithms and Programs......Page 493 Properties of Algorithms......Page 495 Complexity of Algorithms......Page 496 Randomized Algorithms......Page 498 Distributed Systems and Distributed Algorithms......Page 499 Network Topologies......Page 500 Some Architectures of Distributes Systems......Page 502 Modeling Distributed Systems......Page 507 Grammars and Languages......Page 515 Generative Grammars......Page 516 Derivation Trees......Page 517 Backus-Naur Form......Page 518 Attribute Grammars......Page 519 Extended Attribute Grammars......Page 521 Adaptive Grammars......Page 522 Christiansen Grammars......Page 523 Tree-Adjoining Grammars......Page 524 S-expressions......Page 526 Part V Appendices......Page 527 Abbreviations and Symbols......Page 529 Applicability and Definitions......Page 541 Verbatim Copying......Page 542 Modifications......Page 543 Translation......Page 545 Future Revisions of this License......Page 546 Preamble......Page 547 Terms and Conditions for Copying, Distribution and Modification......Page 548 No Warranty......Page 552 How to Apply These Terms to Your New Libraries......Page 553 Credits and Contributors......Page 555 Citation Suggestion......Page 557 References......Page 559 Index......Page 731 List of Figures......Page 747 List of Tables......Page 753 List of Algorithms......Page 755 List of Listings......Page 757
Read more…
English [en] · PDF · 12.1MB · 2008 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11063.0, final score: 167510.89
nexusstc/Data Structures And Algorithms Made Easy In JAVA Data Structures and Algorithmic Puzzles/560817c82e2310a5099e858e749424d7.pdf
Data Structures And Algorithms Made Easy In JAVA: Data Structures and Algorithmic Puzzles Narasimha Karumanchi CareerMonk Publications, 2020
While every effort has been made to avoid any mistake or omission, this publication is being sold on the condition and understanding that neither the author nor the publishers or printers would be liable in any manner to any person by reason of any mistake or omission in this publication or for any action taken or omitted to be taken or advice rendered or accepted on the basis of this work. For any defect in printing or binding the publishers will be liable only to replace the defective copy by another copy of this work then available. h and h , it is impossible to thank you adequately for everything you have done, from loving me unconditionally to raising me in a stable household, where your persistent efforts and traditional values taught your children to celebrate and embrace life. I could not have asked for better parents or role-models. You showed me that anything is possible with faith, hard work and determination. This book would not have been possible without the help of many people. I would like to express my gratitude to all of the people who provided support, talked things over, read, wrote, offered comments, allowed me to quote their remarks and assisted in the editing, proofreading and design. In particular, I would like to thank the following individuals: Bombay, Architect, dataRPM Pvt. Ltd.  , Senior Consultant, Juniper Networks Inc.  . h h , IIT Kanpur, Mentor Graphics Inc. h h M-Tech, Founder, . Radix Sort O( ) O( ) O( ) O( + ) Yes Linear Radix sort is stable, if the underlying sorting algorithm is stable. System-defined data types (Primitive data types) Data types that are defined by system are called data types. The primitive data types provided by many programming languages are: int, float, char, double, bool, etc. The number of bits allocated for each primitive data type depends on the programming languages, the compiler and the operating system. For the same primitive data type, different languages may use different sizes. Depending on the size of the data types, the total available values (domain) will also change. For example, " " may take 2 bytes or 4 bytes. If it takes 2 bytes (16 bits), then the total possible values are minus 32,768 to plus 32,767 (-2 2 -1). If it takes 4 bytes (32 bits), then the possible values are between -2,147,483,648 and +2,147,483, 647 (-2 2 -1). The same is the case with other data types. ## User-defined data types If the system-defined data types are not enough, then most programming languages allow the users to define their own data types, called -. Good examples of user defined data types are: structures in / + + and classes in . For example, in the snippet below, we are combining many system-defined data types and calling the user defined data type by the name " ". This gives more flexibility and comfort in dealing with computer memory. public class newType { public int data1; public int data 2; private float data3; 2 Exponential Faster than all of the functions mentioned here except the factorial functions. ! ## Factorial Fastest growing than all these functions mentioned here. O( ): 5 , 3 -100, 2 -1, 100, 100 , . O( ): , 5 -10, 100, -2 + 1, 5, . ( ) ( ) Input size, Rate of growth 1.16 Theta- Notation Input size, ( ) ( )) Rate of growth ( ) Rate of growth c ( ) c ( ) Input size, Problem-1 ( ) = 3 ( /2) + Solution: ( ) = 3 ( /2) + => ( ) =Θ( ) (Master Theorem Case 3.a) Problem-2 ( ) = 4 ( /2) + Solution: ( ) = 4 ( /2) + => ( ) = Θ( ) (Master Theorem Case 2.a) Problem-3 ( ) = ( /2) + Solution: ( ) = ( /2) + => Θ( ) (Master Theorem Case 3.a) Problem-4 ( ) = 2 ( /2) + Solution: ( ) = 2 ( /2) + => Does not apply ( is not constant) Problem-5 ( ) = 16 ( /4) + From the above proofs, we can see that T( ) ≤ , if ≥ 1 and T( ) ≥ , if ≤ 1. Technically, we're still missing the base cases in both proofs, but we can be fairly confident at this point that T( ) = Θ( ). public void function (int n) { //constant time if(n <= 1) return; //this loop executes with recursive loop of value for (int i=1 ; i <= 3; i++ ) f( ); Time Complexity: O( \* ) =O( ). T( ) T( ) 2 T( ) T( ) 2 3 T( ) T( ) 2 T( ) T( ) 2 3 T( ) Data Structures and Algorithms Made Easy in Java Problem-65 Can we say 2 = O(2 )? Solution: No: because 2 = (2 ) = 8 not less than 2 . Decreasing rate of growths Data Structures and Algorithms Made Easy in Java Recursion and Backtracking 2.1 Introduction 2 1 2 2 3 0 1 2 3 4 5 Index Data Structures and Algorithms Made Easy in Java Linked Lists 3.5 Comparison of Linked Lists with Arrays & Dynamic Arrays ## Problem-21 Can we use stacks for solving Problem-18?
Read more…
English [en] · PDF · 7.0MB · 2020 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.81
nexusstc/Data Structures Into Java (UCB CS61b textbook)/6b85f37f9c13283461498aac47be21f0.pdf
Data Structures Into Java (UCB CS61b textbook) it-ebooks iBooker it-ebooks, it-ebooks-2018, 2018
English [en] · PDF · 1.5MB · 2018 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11062.0, final score: 167510.81
nexusstc/Ray Tracing The Next Week/650e28fad61da3625fc024b3e367274f.pdf
Ray Tracing The Next Week Peter Shirley 2016
English [en] · PDF · 3.6MB · 2016 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11060.0, final score: 167510.81
Blockchain for Dummies (IBM Limited Edition 2017) Manav Gupta John Wiley & Sons, Incorporated, 2017
English [en] · PDF · 1.7MB · 2017 · 📘 Book (non-fiction) · 🚀/lgli/zlib · Save
base score: 11062.0, final score: 167510.81
Your ad here.
nexusstc/Discrete Structures/920fef6500ece730778228860fb338f2.pdf
Discrete Structures Harriet Fell, Javed Aslam, Rajmohan Rajaraman, Eric Ropiak, Chris Burrows, Ravi Sundaram 2.1, 2009
This book is part of the CS 1800 coursework on Discrete Structures at Northeastern University, Boston. The book and the course introduces the mathematical structures and methods that form the foundation of computer science. The material will be motivated by applications from computer science. Students learn: (1) specific skills, e.g., binary and modular arithmetic, set notation, sequences, lists, trees, and graphs, etc.; (2) general knowledge, e.g., counting, proof, and analysis techniques needed to estimate the size of sets, the growth of functions, and the space-time complexity of algorithms; and (3) how to think, e.g., general problem solving techniques.
Read more…
English [en] · PDF · 5.3MB · 2009 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11063.0, final score: 167510.81
lgli/N:\медицина\Pattern Recognition Letters Elsevier August 2005.pdf
Pattern Recognition Letters Elsevier, 2005
Introduction......Page 1 Theoretical foundations......Page 2 Modified fuzzy-rough sets......Page 3 Properties of proposed version offuzzy-rough sets......Page 5 Concluding remarks......Page 8 References......Page 9 Introduction......Page 10 Related works......Page 11 Wavelet-domain hidden Markov modelfor color images......Page 13 WD HMM methods......Page 15 Experiments and discussions......Page 16 Further reading......Page 19 Introduction......Page 20 Edge synthesis......Page 21 The set of test edges used......Page 24 Results......Page 26 Example of use......Page 28 Conclusions......Page 29 References......Page 30 Introduction......Page 31 Relation to prior work......Page 32 Image compression......Page 33 Cross correlation in compressed format......Page 34 Adaptive window positioning......Page 35 Fine correlation and complete depth map......Page 37 Real motion image pair......Page 39 References......Page 41 Introduction......Page 43 System overview......Page 44 Gabor filter design......Page 45 Gabor feature extraction......Page 46 Training sample collection......Page 47 Experimental results......Page 48 Comparison of performance......Page 50 References......Page 51 Introduction......Page 52 Binary texture analysis......Page 53 Run-length based features......Page 54 Spatial-size distribution related features......Page 55 Dimensionality reduction and clustering......Page 56 Experimental results......Page 57 References......Page 59 Introduction......Page 60 Music terminologies......Page 61 Main performance requirements of music melody stream mining......Page 62 Chord-set memory border......Page 63 MMSLMS-summary......Page 64 MMSLMS-mine......Page 68 Experimental results......Page 74 Conclusions......Page 75 References......Page 76 Introduction......Page 77 Classification and the K ndash L distance......Page 78 Application to feature selection......Page 80 Examples......Page 81 Feature space search......Page 82 Conclusion......Page 83 References......Page 84 Recursive computation method for fast encoding of vector quantization based on 2-pixel-merging sum pyramid data structure......Page 86 Introduction......Page 87 Previous work......Page 88 Proposed method......Page 89 Experimental results......Page 90 Conclusion......Page 91 References......Page 92 Design and implementation of a multi-PNN structure for discriminating one-month abstinent heroin addicts from healthy controls using the P600 component of ERP signals......Page 93 ERP generation procedure......Page 94 Compartmental classification......Page 95 Results and discussion......Page 97 References......Page 101 Introduction......Page 103 Texture directionality in multiple resolutions......Page 104 Texture local graylevel variability in multiple resolutions......Page 105 Experimental results......Page 107 References......Page 110 Introduction......Page 112 Global and contextual information......Page 114 Registration: obtaining invariance againstelastic transformations......Page 115 Similarity measure in the final comparison between images......Page 116 Performance of the correlograms......Page 117 Evaluation of the feedback scheme......Page 118 Computational cost: scaling the system......Page 120 Retrieval results......Page 121 Conclusions......Page 122 References......Page 123 Overview of some existing computational methods for the evaluation of symmetry......Page 124 Definition......Page 125 Characteristic point......Page 126 Properties of this parameter......Page 127 Properties of this parameter......Page 128 Improvements of the algorithms......Page 129 Conclusion......Page 130 References......Page 131 Introduction......Page 132 Conditional histograms......Page 134 Classification......Page 135 Segmentation......Page 136 Experimental data......Page 137 Classification results......Page 138 Segmentation......Page 140 References......Page 142 The setting......Page 144 The evidence......Page 145 The plot thickens......Page 146 First witness: Direct comparison......Page 147 Second witness: Overall accuracy......Page 148 Third witness: Inside Statlog......Page 149 The verdict......Page 150 References......Page 151 Density estimation for Bayesian network classifiers......Page 153 Non-parametric density estimation using kernels......Page 155 Spline-approximated KDE for BNCs......Page 156 The spline smoother......Page 157 Databases and methodology......Page 158 Sensitivity to spline order......Page 159 Sensitivity to dimensionality......Page 160 Discussion......Page 161 References......Page 162 Introduction......Page 164 Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding......Page 166 Results......Page 167 Discussion......Page 172 References......Page 173 Introduction......Page 174 Coordinate systems......Page 176 Georeferencing for a push-broom line......Page 177 Resampling and interpolation......Page 178 Algorithm......Page 179 Check for the accuracy of rectification......Page 180 References......Page 183 05001558.PDF......Page 184
Read more…
English [en] · PDF · 6.0MB · 2005 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/scihub/zlib · Save
base score: 11063.0, final score: 167510.81
nexusstc/Data Mining Concepts and Techniques [Solution Manual]/c2367e3e779db07a32337f644287d57d.pdf
Data Mining Concepts and Techniques [Solution Manual] Jiawei Han, Micheline Kamber Elsevier Inc., 2, 0
English [en] · PDF · 0.8MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11057.0, final score: 167510.81
nexusstc/Quick & Indepth C With Data Structures/eb0a0705a5b4f9b2db490d1251c6037b.pdf
Quick & Indepth C With Data Structures Sudripta Nandy 2018
INTRODUCTION TO C 1.1 IMPORTANCE OF C 1.2 WRITING PROGRAMS 1.3 OUR FIRST PROGRAM 1.4 STRUCTURE OF C PROGRAMS 1.5 EXECUTING A 'C' PROGRAM 1.6 IDENTIFIERS IN C DATA TYPES, VARIABLES AND CONSTANTS 2.1 INTRODUCTION 2.2 CHARACTER REPRESENTATION 2.3 TOKENS IN C 2.4 KEYWORDS 2.5 CONSTANTS 2.5.1 INTEGER CONSTANTS 2.5.2 REAL CONSTANTS 2.5.3 SINGLE CHARACTER CONSTANTS 2.5.4 STRING CONSTANTS 2.6 IDENTIFIERS 2.7 VARIABLES 2.7.1 VARIABLE DECLARATION 2.8 DATA TYPES 2.8.1 PRIMARY DATA TYPES 2.8.2 SIZE AND RANGE OF PRIMARY DATA TYPES 2.8.3 DERIVED DATA TYPES 2.8.4 ALIAS DATA TYPES 2.8.5 void DATA TYPE 2.9 STORAGE CLASSES 2.10 DEFINING SYMBOLIC CONSTANTS AND MACROS 2.11 DECLARING A VARIABLE AS A CONSTANT 2.12 VOLATILE VARIABLES 2.13 DATA OVERFLOW AND UNDERFLOW 2.14 SAMPLE PROGRAM OPERATORS AND OPERATIONS 3.1 INTRODUCTION 3.2 ARITHMETIC OPERATORS 3.3 INCREMENT AND DECREMENT OPERATORS 3.4 ASSIGNMENT OPERATORS 3.5 BITWISE OPERATORS 3.6 RELATIONAL OPERATORS 3.7 LOGICAL OPERATORS 3.8 CONDITIONAL (TERNARY) OPERATOR 3.9 SPECIAL OPERATORS 3.9.1 COMMA OPERATOR 3.9.2 sizeof OPERATOR 3.10 ARITHMETIC EXPRESSIONS 3.11 TYPE CONVERSIONS 3.12 OPERATOR PRECEDENCE AND ASSOCIATIVITY 3.13 SAMPLE PROGRAMS INPUT, OUTPUT AND FORMAT SPECIFIERS 4.1 INTRODUCTION 4.2 READING INPUT 4.2.1 SIMPLE INPUT FUNCTIONS 4.2.2 FORMATTED INPUT 4.3 FORMAT SPECIFIERS 4.3.1 FORMATTED INPUT [EXAMPLES] 4.4 GENERATING OUTPUT 4.4.1 SIMPLE OUTPUT FUNCTIONS 4.4.2 FORMATTED OUTPUT 4.5 SAMPLE PROGRAMS ARRAYS 5.1 INTRODUCTION 5.2 ONE-DIMENSIONAL ARRAYS 5.2.1 INITIALIZATION OF ONE-DIMENSIONAL ARRAYS 5.2.2 STRINGS 5.3 TWO-DIMENSIONAL ARRAYS 5.3.1 INITIALIZATION OF TWO-DIMENSIONAL ARRAYS 5.3.2 STRING ARRAYS 5.4 MULTI-DIMENSIONAL ARRAYS 5.5 SAMPLE PROGRAMS CONDITIONAL STATEMENTS AND BRANCHING 6.1 INTRODUCTION 6.2 DECISION CONTROL USING if STATEMENT 6.3 DECISION CONTROL USING if-else STATEMENT 6.4 DECISION CONTROL USING if-else LADDER STATEMENTS 6.5 DECISION CONTROL USING NESTED if STATEMENTS 6.6 DECISION CONTROL USING switch STATEMENT 6.7 DECISION CONTROL USING CONDITIONAL (TERNARY) OPERATOR 6.8 DECISION CONTROL USING goto STATEMENT 6.9 SAMPLE PROGRAMS CONDITIONAL STATEMENTS WITH LOOPS 7.1 INTRODUCTION 7.2 THE while LOOP 7.3 THE do while LOOP 7.4 THE for LOOP 7.5 NESTED LOOPS 7.6 JUMPING WITHIN LOOPS 7.6.1 THE break STATEMENT 7.6.2 THE continue STATEMENT 7.7 CONCISE TEST CONDITIONS 7.8 SAMPLE PROGRAMS POINTERS 8.1 INTRODUCTION 8.2 DECLARING, INITIALIZING AND ASSIGNING POINTERS 8.3 ACCESSING A VARIABLE USING ITS POINTER 8.4 ARRAY OF POINTERS AND POINTER TO AN ARRAY 8.4.1 ARRAY OF POINTERS 8.4.2 POINTER TO AN ARRAY 8.5 POINTER ARITHMETIC 8.6 POINTER TO ANOTHER POINTER 8.7 SAMPLE PROGRAMS CHARACTER STRING OPERATIONS 9.1 INTRODUCTION 9.2 UNICODE CHARACTERS 9.3 ACCEPTING STRINGS FROM USER 9.4 PRINTING STRINGS TO CONSOLE 9.5 ARITHMETIC OPERATIONS WITH CHARACTERS 9.6 ARITHMETIC OPERATIONS WITH STRINGS 9.7 STRING PROCESSING FUNCTIONS 9.7.1 GENERAL STRING PROCESSING FUNCTIONS 9.7.2 MEMORY COPY AND COMPARISON FUNCTIONS 9.7.3 SINGLE CHARACTER PROCESSING FUNCTIONS 9.7.4 STRING CONVERSION FUNCTIONS 9.8 SAMPLE PROGRAMS STRUCTURES AND UNIONS 10.1 INTRODUCTION 10.2 DEFINING A STRUCTURE 10.3 ACCESSING MEMBERS 10.4 STRUCTURE INITIALIZATION 10.5 ARRAY OF STRUCTURE 10.6 POINTER TO STRUCTURE 10.7 NESTED STRUCTURES 10.8 BIT FIELDS 10.9 UNIONS USER DEFINED FUNCTIONS 11.1 INTRODUCTION 11.2 THE STRUCTURE OF A C FUNCTION 11.2.1 FUNCTION NAME 11.2.2 FUNCTION RETURN TYPE AND VALUES 11.2.3 FUNCTION ARGUMENTS 11.2.4 FUNCTION BODY 11.2.5 EXAMPLE PROGRAMS 11.3 FUNCTION VARIABLES: SCOPE AND LIFETIME 11.3.1 AUTOMATIC VARIABLES 11.3.2 GLOBAL AND EXTERNAL VARIABLES 11.3.3 STATIC VARIABLES 11.3.4 REGISTER VARIABLES 11.4 FUNCTIONS WITH POINTER ARGUMENTS 11.4.1 FUNCTION POINTER AS ARGUMENT 11.5 FUNCTIONS WITH ARRAY ARGUMENTS 11.6 FORWARD DECLARATION OF FUNCTIONS 11.7 VARIABLE NUMBER OF ARGUMENTS 11.8 RECURSION 11.9 SAMPLE PROGRAMS FILE MANAGEMENT 12.1 INTRODUCTION 12.2 CREATING AND OPENING FILE 12.3 CLOSING A FILE 12.4 WRITING-TO AND READING-FROM A TEXTUAL FILE 12.4.1 WRITING AND READING SINGLE CHARACTERS 12.4.2 WRITING AND READING INTEGERS 12.4.3 WRITING AND READING STRINGS 12.4.4 WRITING AND READING FORMATTED DATA 12.5 WRITING-TO AND READING-FROM A BINARY FILE 12.6 MISCELLANEOUS FILE MANAGEMENT FUNCTIONS DYNAMIC MEMORY ALLOCATION 13.1 INTRODUCTION 13.2 C PROGRAM – MEMORY LAYOUT 13.3 ALLOCATING MEMORY 13.4 ALTERING ALLOCATED MEMORY SIZE 13.5 RELEASING ALLOCATED SPACE 13.6 SAMPLE PROGRAM 13.7 THINGS TO REMEMBER COMMAND LINE ARGUMENTS 14.1 INTRODUCTION 14.2 ‘main’ FUNCTION REVISITED 14.3 SAMPLE PROGRAMS PREPROCESSOR DIRECTIVES 15.1 INTRODUCTION 15.2 FILE INCLUSION DIRECTIVES 15.3 MACRO DIRECTIVES 15.3.1 SIMPLE MACRO SUBSTITUTION 15.3.2 MACRO SUBSTITUTION USING ARGUMENTS 15.3.3 NESTED MACRO SUBSTITUTION 15.3.4 STANDARD PREDEFINED MACROS 15.3.5 UNDEFINING A MACRO 15.4 COMPILER CONTROL DIRECTIVES 15.4.1 CONDITIONAL PREPROCESSOR STATEMENTS 15.4.2 Pragma DIRECTIVES 15.4.3 DIAGNOSTIC PREPROCESSOR STATEMENTS 15.5 SAMPLE PROGRAM DEPRECATED FUNCTIONS BEST PROGRAMMING PRACTICES 17.1 INTRODUCTION 17.1.1 DOCUMENTATION 17.1.2 AVOID USING DEPRECATED FUNCTIONS 17.1.3 TABS 17.1.4 INDENTATION 17.1.5 LINE LENGTH 17.1.6 BLANK LINES 17.1.7 FILE HEADER 17.1.8 FUNCTION HEADER 17.1.9 BRACES 17.1.10 PREVENT MULTIPLE INCLUSIONS 17.1.11 FUNCTION POINTERS 17.1.12 USE OF PARENTHESIS 17.1.13 BOOLEAN COMPARISONS 17.1.14 COMPARING CONSTANTS 17.1.15 ALWAYS CHECK RETURN VALUES 17.1.16 BLOCK STATEMENTS 17.1.17 SWITCH STATEMENTS 17.1.18 DISABLING OUT CODE 17.1.19 SHORT FUNCTIONS ARE BEAUTIFUL 17.1.20 LIMIT EXIT POINTS FROM FUNCTIONS 17.1.21 INITIALIZE VARIABLES 17.1.22 VARIABLE NAMING CONVENTIONS LINKED LISTS 18.1 INTRODUCTION 18.2 LINKED LIST TYPES 18.2.1 SINGLE LINEAR LINKED LIST 18.2.2 DOUBLE LINEAR LINKED LIST 18.2.3 SINGLE CIRCULAR LINKED LIST 18.2.4 DOUBLE CIRCULAR LINKED LIST STACKS AND QUEUES 19.1 INTRODUCTION 19.2 STACKS 19.2.1 STACK USING ARRAY 19.2.2 STACK USING LINKED LIST 19.3 QUEUES 19.3.1 QUEUE USING ARRAY 19.3.2 QUEUE USING LINKED LIST TREES 20.1 INTRODUCTION 20.2 BINARY SEARCH TREES 20.3 AVL TREES 20.3.1 AVL ROTATIONS 20.4 SPACE AND TIME COMPLEXITIES 20.5 FULL BINARY TREES 20.6 PERFECT BINARY TREES 20.7 COMPLETE BINARY TREES SORTING AND SEARCHING 21.1 INTRODUCTION 21.2 QUICKSORT 21.3 MERGE SORT 21.4 BINARY HEAP 21.5 HEAP SORT 21.6 INSERTION SORT 21.7 BUBBLE SORT 21.8 SELECTION SORT 21.9 BINARY SEARCH TREE 21.10 SPACE AND TIME COMPLEXITIES 21.11 SEARCHING 21.11.1 LINEAR SEARCH 21.11.2 BINARY SEARCH 21.11.3 BINARY SEARCH TREE 21.11.4 JUMP SEARCH C LIBRARY FUNCTIONS
Read more…
English [en] · PDF · 13.3MB · 2018 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11063.0, final score: 167510.81
nexusstc/Bluetooth Demystified/02f1a87f4dbf753992bc5d7ed6628698.pdf
Bluetooth Demystified McGraw-Hill, Scanned
English [en] · PDF · 11.1MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11060.0, final score: 167510.73
Your ad here.
nexusstc/Data Structures And Algorithmic Thinking With Go/4750b363c9d0127c8eefc0baf73724ea.pdf
Data Structures And Algorithmic Thinking With Go Narasimha Karumanchi CareerMonk Publications, 2021
The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms. In this book, we cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.
Read more…
English [en] · PDF · 6.5MB · 2021 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.73
nexusstc/Introduction to Computer Graphics/45fb8603faf92648f429ad5ef84d85e5.pdf
Introduction to Computer Graphics David J. Eck
No Cover Page.
Read more…
English [en] · PDF · 5.2MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11061.0, final score: 167510.73
nexusstc/Advances in Evolutionary Algorithms/365576a7b112b341752a5758c3db8d0e.pdf
Advances in Evolutionary Algorithms Witold Kosinski (ed.) AvE4EvA, 2008
With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field.
Read more…
English [en] · PDF · 49.7MB · 2008 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.73
nexusstc/Beginning Java Data Structures and Algorithms/cbbea3eb3f57a42a2702b69d32abe2a6.epub
Beginning Java Data Structures and Algorithms James Cutajar [James Cutajar] Packt Publishing, 1, 2018
**Though your application serves its purpose, it might not be a high performer. Learn techniques to accurately predict code efficiency, easily dismiss inefficient solutions, and improve the performance of your application.** Key Features* Explains in detail different algorithms and data structures with sample problems and Java implementations where appropriate * Includes interesting tips and tricks that enable you to efficiently use algorithms and data structures * Covers over 20 topics using 15 practical activities and exercises Book DescriptionLearning about data structures and algorithms gives you a better insight on how to solve common programming problems. Most of the problems faced everyday by programmers have been solved, tried, and tested. By knowing how these solutions work, you can ensure that you choose the right tool when you face these problems. This book teaches you tools that you can use to build efficient applications. It starts with an introduction to algorithms and big O notation, later explains bubble, merge, quicksort, and other popular programming patterns. You'll also learn about data structures such as binary trees, hash tables, and graphs. The book progresses to advanced concepts, such as algorithm design paradigms and graph theory. By the end of the book, you will know how to correctly implement common algorithms and data structures within your applications. What you will learn* Understand some of the fundamental concepts behind key algorithms * Express space and time complexities using Big O notation. * Correctly implement classic sorting algorithms such as merge and quicksort * Correctly implement basic and complex data structures * Learn about different algorithm design paradigms, such as greedy, divide and conquer, and dynamic programming * Apply powerful string matching techniques and optimize your application logic * Master graph representations and learn about different graph algorithms Who this book is forIf you want to better understand common data structures and algorithms by following code examples in Java and improve your application efficiency, then this is the book for you. It helps to have basic knowledge of Java, mathematics and object-oriented programming techniques. Downloading the example code for this book You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.
Read more…
English [en] · EPUB · 1.6MB · 2018 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.73
nexusstc/Data Structures and Algorithms in Ruby/8d2d1364d3dbcb03470cd3f772f8fa40.pdf
Data Structures and Algorithms in Ruby Hemant Jain 1, 2017
Data Structures & First Edition Problems Solving in Data Structures & Algorithms in Ruby ACKNOWLEDGEMENT Chapter 1: Algorithms Analysis Chapter 2: Approach To Solve Algorithm Design Problems Chapter 3: Abstract Data Type & Ruby Collections Chapter 4: Searching Chapter 5: Sorting Chapter 13: String Algorithms Chapter 6: Linked List Chapter 7: Stack Chapter 8: Queue Chapter 9: Tree Chapter 1: Algorithms Analysis Chapter 2: Approach To Solve Algorithm Design Problems Chapter 3: Abstract Data Type & Ruby Collections Chapter 4: Searching Chapter 5: Sorting Chapter 13: String Algorithms Chapter 6: Linked List Chapter 7: Stack Chapter 8: Queue Chapter 9: Tree Chapter 10: Heap Chapter 11: Hash-Table Chapter 12: Graphs Chapter 1: Algorithms Analysis Chapter 2: Approach To Solve Algorithm Design Problems Chapter 3: Abstract Data Type & Ruby Collections Chapter 4: Searching Chapter 5: Sorting Chapter 13: String Algorithms Chapter 6: Linked List Chapter 7: Stack Chapter 8: Queue Chapter 9: Tree Chapter 10: Heap Chapter 11: Hash-Table Chapter 12: Graphs Step 1. Reverse the infix expression. Step 2. Make Every '(' as ')' and every ')' as '(' Step 4. Reverse the expression. Step 1: Characterizing the structure of the optimal solution Step 2: A recursive definition of the values to be computed Step 3: Computing the fastest time finally, compute f* as Step (iv): Construct an optimal solution
Read more…
English [en] · PDF · 5.5MB · 2017 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11063.0, final score: 167510.73
Your ad here.
nexusstc/Competitive Programming 4/88f76169373645a771424357d09c6e63.pdf
Competitive Programming 4 Book 2 Chapter 5–9 unknown Book 2 Chapter 5–9, 2020
CP4: Book 2 Contents 5 Mathematics 5.1 Overview and Motivation 5.2 Ad Hoc Mathematical Problems 5.3 Number Theory 5.3.1 Prime Numbers 5.3.2 Probabilistic Prime Testing (Java Only) 5.3.3 Finding Prime Factors with Optimized Trial Divisions 5.3.4 Functions Involving Prime Factors 5.3.5 Modified Sieve 5.3.6 Greatest Common Divisor & Least Common Multiple 5.3.7 Factorial 5.3.8 Working with Prime Factors 5.3.9 Modular Arithmetic 5.3.10 Extended Euclidean Algorithm 5.3.11 Number Theory in Programming Contests 5.4 Combinatorics 5.4.1 Fibonacci Numbers 5.4.2 Binomial Coefficients 5.4.3 Catalan Numbers 5.4.4 Combinatorics in Programming Contests 5.5 Probability Theory 5.6 Cycle-Finding 5.6.1 Problem Description 5.6.2 Solutions using Efficient Data Structures 5.6.3 Floyd’s Cycle-Finding Algorithm 5.7 Game Theory (Basic) 5.8 Matrix Power 5.8.1 Some Definitions and Sample Usages 5.8.2 Efficient Modular Power (Exponentiation) 5.8.3 Efficient Matrix Modular Power (Exponentiation) 5.8.4 DP Speed-up with Matrix Power 5.9 Solution to Non-Starred Exercises 5.10 Chapter Notes 6 String Processing 6.1 Overview and Motivation 6.2 Ad Hoc String (Harder) 6.3 String Processing with DP 6.3.1 String Alignment (Edit Distance) 6.3.2 Longest Common Subsequence 6.3.3 Non Classical String Processing with DP 6.4 String Matching 6.4.1 Library Solutions 6.4.2 Knuth-Morris-Pratt (KMP) Algorithm 6.4.3 String Matching in a 2D Grid 6.5 Suffix Trie/Tree/Array 6.5.1 Suffix Trie and Applications 6.5.2 Suffix Tree 6.5.3 Applications of Suffix Tree 6.5.4 Suffix Array 6.5.5 Applications of Suffix Array 6.6 String Matching with Hashing 6.6.1 Hashing a String 6.6.2 Rolling Hash 6.6.3 Rabin-Karp String Matching Algorithm 6.6.4 Collisions Probability 6.7 Anagram and Palindrome 6.7.1 Anagram 6.7.2 Palindrome 6.8 Solution to Non-Starred Exercises 6.9 Chapter Notes 7 (Computational) Geometry 7.1 Overview and Motivation 7.2 Basic Geometry Objects with Libraries 7.2.1 0D Objects: Points 7.2.2 1D Objects: Lines 7.2.3 2D Objects: Circles 7.2.4 2D Objects: Triangles 7.2.5 2D Objects: Quadrilaterals 7.3 Algorithms on Polygon with Libraries 7.3.1 Polygon Representation 7.3.2 Perimeter of a Polygon 7.3.3 Area of a Polygon 7.3.4 Checking if a Polygon is Convex 7.3.5 Checking if a Point is Inside a Polygon 7.3.6 Cutting Polygon with a Straight Line 7.3.7 Finding the Convex Hull of a Set of Points 7.4 3D Geometry 7.5 Solution to Non-Starred Exercises 7.6 Chapter Notes 8 More Advanced Topics 8.1 Overview and Motivation 8.2 More Advanced Search Techniques 8.2.1 Backtracking with Bitmask 8.2.2 State-Space Search with BFS or Dijkstra’s 8.2.3 Meet in the Middle 8.3 More Advanced DP Techniques 8.3.1 DP with Bitmask 8.3.2 Compilation of Common (DP) Parameters 8.3.3 Handling Negative Parameter Values with O↵set 8.3.4 MLE/TLE? Use Better State Representation 8.3.5 MLE/TLE? Drop One Parameter, Recover It from Others 8.3.6 Multiple Test Cases? No Memo Table Re-initializations 8.3.7 MLE? Use bBST or Hash Table as Memo Table 8.3.8 TLE? Use Binary Search Transition Speedup 8.3.9 Other DP Techniques 8.4 Network Flow 8.4.1 Overview and Motivation 8.4.2 Ford-Fulkerson Method 8.4.3 Edmonds-Karp Algorithm 8.4.4 Dinic’s Algorithm 8.4.5 Flow Graph Modeling - Classic 8.4.6 Flow Graph Modeling - Non Classic 8.4.7 Network Flow in Programming Contests 8.5 Graph Matching 8.5.1 Overview and Motivation 8.5.2 Graph Matching Variants 8.5.3 Unweighted MCBM 8.5.4 Weighted MCBM and Unweighted/Weighted MCM 8.6 NP-hard/complete Problems 8.6.1 Preliminaries 8.6.2 Pseudo-Polynomial: Knapsack, Subset-Sum, Coin-Change 8.6.3 Traveling-Salesman-Problem (TSP) 8.6.4 Hamiltonian-Path/Tour 8.6.5 Longest-Path 8.6.6 Max-Independent-Set and Min-Vertex-Cover 8.6.7 Min-Set-Cover 8.6.8 Min-Path-Cover 8.6.9 Satisfiability (SAT) 8.6.10 Steiner-Tree 8.6.11 Graph-Coloring 8.6.12 Min-Clique-Cover 8.6.13 Other NP-hard/complete Problems 8.6.14 Summary 8.7 Problem Decomposition 8.7.1 Two Components: Binary Search the Answer and Other 8.7.2 Two Components: Involving Efficient Data Structure 8.7.3 Two Components: Involving Geometry 8.7.4 Two Components: Involving Graph 8.7.5 Two Components: Involving Mathematics 8.7.6 Two Components: Graph Preprocessing and DP 8.7.7 Two Components: Involving 1D Static RSQ/RMQ 8.7.8 Three (or More) Components 8.8 Solution to Non-Starred Exercises 8.9 Chapter Notes 9 Rare Topics 9.1 Overview and Motivation 9.2 Sliding Window 9.3 Sparse Table Data Structure 9.4 Square Root Decomposition 9.5 Heavy-Light Decomposition 9.6 Tower of Hanoi 9.7 Matrix Chain Multiplication 9.8 Lowest Common Ancestor 9.9 Tree Isomorphism 9.10 De Bruijn Sequence 9.11 Fast Fourier Transform 9.12 Pollard’s rho Algorithm 9.13 Chinese Remainder Theorem 9.14 Lucas’ Theorem 9.15 Rare Formulas or Theorems 9.16 Combinatorial Game Theory 9.17 Gaussian Elimination Algorithm 9.18 Art Gallery Problem 9.19 Closest Pair Problem 9.20 A* and IDA*: Informed Search 9.21 Pancake Sorting 9.22 Egg Dropping Puzzle 9.23 Dynamic Programming Optimization 9.24 Push-Relabel Algorithm 9.25 Min Cost (Max) Flow 9.26 Hopcroft-Karp Algorithm 9.27 Kuhn-Munkres Algorithm 9.28 Edmonds’ Matching Algorithm 9.29 Chinese Postman Problem 9.30 Constructive Problem 9.31 Interactive Problem 9.32 Linear Programming 9.33 Gradient Descent 9.34 Chapter Notes Index
Read more…
English [en] · PDF · 12.2MB · 2020 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11063.0, final score: 167510.73
lgli/40 Algorithms Every Data Scientist Should Know.epub
40 Algorithms Every Data Scientist Should Know : Navigating through essential AI and ML algorithms Weichenberger, Jürgen;Kwon, Huw;; Huw Kwon BPB Publications, 2024
DESCRIPTION Mastering AI and ML algorithms is essential for data scientists. This book covers a wide range of techniques, from supervised and unsupervised learning to deep learning and reinforcement learning. This book is a compass to the most important algorithms that every data scientist should have at their disposal when building a new AI/ML application. This book offers a thorough introduction to AI and ML, covering key concepts, data structures, and various algorithms like linear regression, decision trees, and neural networks. It explores learning techniques like supervised, unsupervised, and semi-supervised learning and applies them to real-world scenarios such as natural language processing and computer vision. With clear explanations, code examples, and detailed descriptions of 40 algorithms, including their mathematical foundations and practical applications, this resource is ideal for both beginners and experienced professionals looking to deepen their understanding of AI and ML. The final part of the book gives an outlook for more state-of-the-art algorithms that will have the potential to change the world of AI and ML fundamentals. KEY FEATURES ● Covers a wide range of AI and ML algorithms, from foundational concepts to advanced techniques. ● Includes real-world examples and code snippets to illustrate the application of algorithms. ● Explains complex topics in a clear and accessible manner, making it suitable for learners of all levels. WHAT YOU WILL LEARN ● Differences between supervised, unsupervised, and reinforcement learning. ● Gain expertise in data cleaning, feature engineering, and handling different data formats. ● Learn to implement and apply algorithms such as linear regression, decision trees, neural networks, and support vector machines. ● Creating intelligent systems and solving real-world problems. ● Learn to approach AI and ML challenges with a structured and analytical mindset. WHO THIS BOOK IS FOR This book is ideal for data scientists, ML engineers, and anyone interested in entering the world of AI. TABLE OF CONTENTS 1. Fundamentals 2. Typical Data Structures 3. 40 AI/ML Algorithms Overview 4. Basic Supervised Learning Algorithms 5. Advanced Supervised Learning Algorithms 6. Basic Unsupervised Learning Algorithms 7. Advanced Unsupervised Learning Algorithms 8. Basic Reinforcement Learning Algorithms 9. Advanced Reinforcement Learning Algorithms 10. Basic Semi-Supervised Learning Algorithms 11. Advanced Semi-Supervised Learning Algorithms 12. Natural Language Processing 13. Computer Vision 14. Large-Scale Algorithms 15. Outlook into the Future: Quantum Machine Learning
Read more…
English [en] · EPUB · 7.2MB · 2024 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/zlib · Save
base score: 11065.0, final score: 167510.73
lgli/D:\!genesis\library.nu\9b\_259482.9b576c5e3bcc60a60a2201d06f02b86d.pdf
Mining of Massive DataSets Jeffrey D Ullman
English [en] · PDF · 2.1MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11058.0, final score: 167510.73
nexusstc/IEEE Signal Processing Magazine/ce97e351e2491aa2f56e0b7b0320e1f1.pdf
IEEE Signal Processing Magazine unknown IEEE, IEEE Signal Processing Magazine, #6, 38, 2019 nov
165_36msp06
Read more…
English [en] · PDF · 11.5MB · 2019 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.73
nexusstc/Data Structures & Algorithms for all programmers/eca85b28707453a5ec94ccd2da6ba4a0.epub
Data Structures & Algorithms for all programmers Israel Abazie Independently published, 2023
Dive into over 90 captivating algorithm challenges, spanning more than 600 pages of insights and real-world applications. With comprehensive coverage of essential data structures like linked lists, stacks, queues, trees, and graphs, you'll be fully prepared for success in interviews and equipped to thrive at top tech companies worldwide Unlock your programming potential with "Data Structures & Algorithms for All Programmers." Gain invaluable knowledge, master implementation, and prepare for success in interviews while thriving in top tech companies worldwide. This captivating book offers More than 90 algorithm challenges. Over 600 pages of insights into algorithms and their real-world applications. Comprehensive coverage of essential data structures, including Arrays Linked lists Stacks Queues Trees Graphs
Read more…
English [en] · EPUB · 32.8MB · 2023 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.73
Your ad here.
nexusstc/Solutions Manual for Introduction to Algorithms (CLRS)/f19bee0894094179ffbd60172fc5239e.pdf
Solutions Manual for Introduction to Algorithms (CLRS) Michelle Bodnar, Andrew Lohr; Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, Clifford Stein 3, 2015
English [en] · PDF · 16.7MB · 2015 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11060.0, final score: 167510.73
The Computer Always Wins: A Playful Introduction to Algorithms Through Puzzles and Strategy Games Elliot Joseph Lichtman MIT Press, 1, 2025
An engaging and approachable resource for beginning-to-intermediate coders eager to learn advanced ideas in computer programming. In The Computer Always Wins, Elliot Lichtman will teach you some of computer science’s most powerful concepts in a refreshingly accessible way: exploring them through word games, board games, and strategy games you already know. Learn recursion by playing tic-tac-toe, efficient search through puzzle games like sudoku and Wordle, and machine learning by way of the playground classic rock-paper-scissors. Finish the book, and you’ll come away with not only a deeper understanding of these foundational programming techniques but also a new appreciation for the amazing feats that can be accomplished using simple, readable code.
Read more…
English [en] · EPUB · 7.5MB · 2025 · 📘 Book (non-fiction) · 🚀/zlib · Save
base score: 11065.0, final score: 167510.73
nexusstc/Renormalization in Area-Preserving maps/50ef9adbc0380a5900af83f4b4226a22.pdf
Renormalization in Area-Preserving maps MacKay
English [en] · PDF · 6.1MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11058.0, final score: 167510.73
nexusstc/Make Your Own Mandelbrot/5f2504643ab27e97d62794781ef87994.pdf
Make Your Own Mandelbrot Tariq Rashid CreateSpace Independent Publishing Platform, 2014
English [en] · PDF · 13.0MB · 2014 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11062.0, final score: 167510.73
nexusstc/Data Engineering Teams/717b4881f734371cf6cfef62c799b566.epub
Data Engineering Teams Jesse Anderson 2017
Introduction About This Book Warnings and Success Stories Who Should Read This Navigating the Book Chapters Conventions Used in This Book Big Data Why Is Big Data So Much More Complicated? Distributed Systems Are Hard What Does It All Mean, Basil? What Does It Mean for Software Engineering Teams? What Does It Mean for Data Warehousing Teams? What Is a Data Engineering Team? Skills Needed in a Team Skills Gap Analysis Skill Gap Analysis Results What I Look for in Data Engineering Teams Operations Quality Assurance What Is a Data Engineer? What I Look for in Data Engineers Qualified Data Engineers Not Just Data Warehousing and DBAs Ability Gap Themes and Thoughts of a Data Engineering Team Hub of the Wheel How to Work with a Data Science Team How to Work with a Data Warehousing Team How to Work with an Analytics and/or Business Intelligence Team “How I Evaluate Teams Equipment and Resources Thought Frameworks Building Data Pipelines Knowledge of Use Case Right Tool for the Job Crawl, Walk, Run Technologies Why Do Teams Fail? Why Do Teams Succeed? Paying the Piper Some Technologies Are Just Dead Ends What if You Have Gaps and Still Have to Do It? Pre-project Steps Use Case Evaluate the Team Choose the Technologies Write the Code Evaluate Repeat Probability of Success Conclusion Best Efforts About the Author
Read more…
English [en] · EPUB · 1.3MB · 2017 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11063.0, final score: 167510.73
Your ad here.
upload/newsarch_ebooks_2025_10/2023/04/08/B0BZTZ3PGS.epub
Grokking Algorithms Ananya Gupta Universitetsforlaget AS, 2023
Welcome to Grokking Algorithms, the ultimate guide to understanding algorithms from novice to pro!Inside this book, you'll learn all about the fundamental concepts and techniques that power algorithms and data structures. We'll cover everything from Big O notation to graph algorithms, dynamic programming, and more.The best of what you'll learn inside quickly and easilyThe basics of Big O notation and how to analyze the time and space complexity of algorithmsDivide and Conquer techniques including Binary Search and RecursionDynamic Programming and how to use memorization and tabulation for optimizationGreedy Algorithms and how to make optimal choicesShortest Path algorithms including Dijkstra's Algorithm and Bellman-Ford AlgorithmNP-Complete problems and how to use approximation algorithmsAdvanced Data Structures such as B-Trees, Hash Tables, and moreBy the end of this book, you'll have a complete understanding of algorithms and data structures, and you'll be able to apply this knowledge to real-world programming challenges.This is just an outline-nothing is described in any detail.
Read more…
English [en] · EPUB · 0.4MB · 2023 · 📘 Book (non-fiction) · 🚀/upload/zlib · Save
base score: 11055.0, final score: 167510.73
nexusstc/Data Structures & Algorithms in Dart/ae5c08c528f06331d3c63f3904a2a48c.pdf
Data Structures & Algorithms in Dart Vincent Ngo; Jonathan Sande; Kelvin Lau Razeware LLC, 2022
Take your programming skills to the next level. Learn to build stacks, queues, trees, graphs, and efficient sorting and searching algorithms from scratch. Perhaps you’ve heard about Big O notation, stacks and queues, or bubble sort and quicksort. You’d like to learn more, but it’s hard to find any good examples and explanations that use your favorite programming language, Dart. Data Structures & Algorithms in Dart is here to help with in-depth explanations, copious illustrations, and step-by-step examples. The book begins by reviewing fundamental data structures like lists and maps and then goes on to teach you how to build other important structures from scratch, including stacks, linked lists, queues, trees and graphs. From there you’ll use these data structures to understand and write many different traversal, searching and sorting algorithms. All along the way, you’ll learn how to analyze the efficiency of your code and express that efficiency using Big O notation.
Read more…
English [en] · PDF · 28.3MB · 2022 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.73
nexusstc/Data Structures & Algorithms In Go/d0470bf6cb9022a088fc8de05b504d29.pdf
Data Structures & Algorithms In Go, First Edition Hemant Jain Hemant Jain, 1st, 2017
This book introduces you to the world of data structures and algorithms. Data structure defines the way data is arranged in computer memory for fast and efficient access while algorithm is a set of instruction to solve problems by manipulating these data structures.Designing an efficient algorithm is a very important skill that all computer companies e.g. Microsoft, Google, Facebook etc. pursue. Most of the interview for these companies is focused on knowledge of data structure and algorithm. They look for how candidate use these to solve complex problem efficiently, which is also very important in everyday coding. Apart from knowing, a programming language you also need to have good command on these key Computer fundamentals to not only qualify the interview but also excel in the top high paying jobs.This book assumes that you are a Go language developer. You are not an expert in Go language, but you are well familiar with concepts of class, references, functions, list, tuple, dictionary and recursion. At the start of this book, we will be revising Go language fundamentals that will be used throughout this book. We will be looking into some of the problems in Lists and recursion too.
Read more…
English [en] · PDF · 6.5MB · 2017 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 167510.73
nexusstc/Image Processing With LabVIEW And IMAQ Vision/cddfe24b1462e2818661a5c9003fe211.doc
Image Processing With LabVIEW And IMAQ Vision Prentice Hall PTR
English [en] · DOC · 11.8MB · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11040.0, final score: 167510.73
nexusstc/Introduction to Parallel Algorithms/d92f189449779218ba47f9b9dc74a565.pdf
Introduction to Parallel Algorithms Guy E. Blelloch, Laxman Dhulipala, Yihan Sun Carnegie Mellon University (CMU), Draft, 2021
English [en] · PDF · 0.9MB · 2021 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11057.0, final score: 167510.73
Your ad here.
Data Access for Highly-Scalable Solutions: Using SQL, NoSQL, and Polyglot Persistence (Microsoft patterns & practices) Sharp, John, McMurtry, Douglas, Oakley, Andrew, Subramanian, Mani, Zhang, Hanzhong Microsoft patterns & practices, 1, PS, 2013
All applications use data, and most applications also need to store this data somewhere. In the world of business solutions, this often meant creating a relational database. However, relational technology is not always the best solution to meet the increasingly complex data-processing requirements of modern business systems, especially when this processing involves storing and retrieving massive amounts of data. The advent of NoSQL databases has changed the way in which organizations have started to think about the way in which they structure their data. There is no standard definition of what a NoSQL database is other than they are all non-relational. They are less generalized than relational databases, but the driving force behind most NoSQL databases is focused efficiency and high scalability. The downside of NoSQL is that no single database is likely to be able to support the complete range of business requirements mandated by your applications. How do you select the most appropriate database to use, or should you remain with the relational model? A modern business application is not restricted to using a single data store, and an increasing number of solutions are now based on a polyglot architecture. The key to designing a successful application is to understand which databases best meet the needs of the various parts of the system, and how to combine these databases into a single, seamless solution. This guide helps you understand these challenges and enables you to apply the principles of NoSQL databases and polyglot solutions in your own environment. To help illustrate how to build a polyglot solution, this guide presents a case study of a fictitious company faced with building a highly scalable web application capable of supporting many thousands of concurrent users.
Read more…
English [en] · PDF · 9.1MB · 2013 · 📘 Book (non-fiction) · 🚀/zlib · Save
base score: 11065.0, final score: 167510.62
Previous 1 2 3 4 5 6 7 8 9 Next
Previous 1 2 … 4 5 6 … 9 Next
Anna’s Archive
Home
Search
Donate
🧬 SciDB
FAQ
Account
Log in / Register
Account
Public profile
Downloaded files
My donations
Referrals
Explore
Activity
Codes Explorer
ISBN Visualization ↗
Community Projects ↗
Open data
Datasets
Torrents
LLM data
Stay in touch
Contact email
Anna’s Blog ↗
Reddit ↗
Matrix ↗
Help out
Improve metadata
Volunteering & Bounties
Translate ↗
Development
Anna’s Software ↗
Security
DMCA / copyright claims
Alternatives
annas-archive.li ↗
annas-archive.se ↗
annas-archive.org ↗
SLUM [unaffiliated] ↗
SLUM 2 [unaffiliated] ↗