📄 New blog post: We finished the Chinese release
✕

Anna’s Archive

📚 The largest truly open library in human history. 📈 61,344,044 books, 95,527,824 papers — preserved forever.
AA 38TB
direct uploads
IA 304TB
scraped by AA
DuXiu 298TB
scraped by AA
Hathi 9TB
scraped by AA
Libgen.li 188TB
collab with AA
Z-Lib 77TB
collab with AA
Libgen.rs 82TB
mirrored by AA
Sci-Hub 90TB
mirrored by AA
⭐️ Our code and data are 100% open source. Learn more…
✕ Recent downloads:  
Home Home Home Home
Anna’s Archive
Home
Search
Donate
🧬 SciDB
FAQ
Account
Log in / Register
Account
Public profile
Downloaded files
My donations
Referrals
Explore
Activity
Codes Explorer
ISBN Visualization ↗
Community Projects ↗
Open data
Datasets
Torrents
LLM data
Stay in touch
Contact email
Anna’s Blog ↗
Reddit ↗
Matrix ↗
Help out
Improve metadata
Volunteering & Bounties
Translate ↗
Development
Anna’s Software ↗
Security
DMCA / copyright claims
Alternatives
annas-archive.li ↗
annas-archive.se ↗
annas-archive.org ↗
SLUM [unaffiliated] ↗
SLUM 2 [unaffiliated] ↗
SearchSearch DonateDonate
AccountAccount
Search settings
Order by
Advanced
Add specific search field
Content
Filetype open our viewer
more…
Access
Source
Language
more…
Display
Search settings
Download Journal articles Digital Lending Metadata
Results 1-15 (15 total)
lgli/M_Mathematics/MC_Calculus/MCat_Advanced calculus/Hardy G.H., Littlewood J.E., Polya G. Inequalities (CUP, 1934)(600dpi)(K)(T)(O)(327s)_MCat_.djvu
Inequalities G. H. Hardy, J. E. Littlewood, G. Pólya Cambridge University Press, Cambridge Mathematical Library, 1934
Cover......Page 1 Cambridge University Press, 1934......Page 2 Preface......Page 6 Contents......Page 8 1.1. Finite, infinite, and integral inequalities......Page 14 1.3. Positive inequalities......Page 15 1.4. Homogeneous inequalities......Page 16 1.5. The axiomatic basis of algebraic inequalities......Page 17 1.6. Comparable functions......Page 18 1.7. Selection of proofs......Page 19 1.8. Selection of subjects......Page 21 2.1. Ordinary means......Page 25 2.2. Weighted means......Page 26 2.3. Limiting cases of R_r(a)......Page 27 2.5. The theorem of the arithmetic and geometric means......Page 29 2.6. Other proofs of the theorem of the means......Page 31 2.7. Holder's inequality and its extensions......Page 34 2.8. Holder's inequality and its extensions (continued)......Page 37 2.9. General properties of the means R_r(a)......Page 39 2.10. The sums S_r(a)......Page 41 2.11. Minkowski's inequality......Page 43 2.13. Illustrations and applications of the fundamental inequalities......Page 45 2.14. Inductive proofs of the fundamental inequalities......Page 50 2.15. Elementary inequalities connected with Theorem 37......Page 52 2.16. Elementary proof of Theorem 3......Page 55 2.17. Tchebychef's inequality......Page 56 2.18. Muirhead's theorem......Page 57 2.19. Proof of Muirhead's theorem......Page 59 2.21. Further theorems on symmetrical means......Page 62 2.22. The elementary symmetric functions of n positive numbers......Page 64 2.23. A note on definite forms......Page 68 2.24. A theorem concerning strictly positive forms......Page 70 Miscellaneous theorems and examples......Page 73 3.1. Definitions......Page 78 3.2. Equivalent means......Page 79 3.3. A characteristic property of the means R_r......Page 81 3.4. Comparability......Page 82 3.5. Convex functions......Page 83 3.6. Continuous convex functions......Page 84 3.7. An alternative definition......Page 86 3.8. Equality in the fundamental inequalities......Page 87 3.9. Restatements and extensions of Theorem 85......Page 88 3.10. Twice differentiable convex functions......Page 89 3.11. Applications of the properties of twice differentiable convex functions......Page 90 3.12. Convex functions of several variables......Page 91 3.13. Generalisations of Holder's inequality......Page 94 3.14. Some theorems concerning monotonic functions......Page 96 3.15. Sums with an arbitrary function: generalisationsof Jensen's inequality......Page 97 3.16. Generalisations of Minkowski's inequality......Page 98 3.17. Comparison of sets......Page 101 3.18. Further general properties of convex functions......Page 104 3.19. Further properties of continuous convex functions......Page 107 3.20. Discontinuous convex functions......Page 109 Miscellaneous theorems and examples......Page 110 4.2. Applications of the mean value theorem......Page 115 4.3. Further applications of elementary differentialcalculus......Page 117 4.4. Maxima and minima of functions of one variable......Page 119 4.5. Use of Taylor's series......Page 120 4.6. Applicationsofthe theory of maxima and minima offunctions of several variables......Page 121 4.7. Comparison of series and integrals......Page 123 4.8. An inequality of Young......Page 124 5.1. Introduction......Page 127 5.2. The means R_r......Page 129 5.3. The generalisation of Theorems 3 and 9......Page 131 5.4. Holder's inequality and its extensions......Page 132 5.5. The means R_r (continued)......Page 134 5.6. The sums S_r......Page 135 5.9. A summary......Page 136 Miscellaneous theorems and examples......Page 137 6.1. Preliminary remarks on Lebesgue integrals......Page 139 6.2. Remarks on nul sets and nul functions......Page 141 6.3. Further remarks concerning integration......Page 142 6.4. Remarks on methods of proo......Page 144 6.5. Further remarks on method: the inequality ofSchwarz......Page 145 6.6. Definition of the means R_r(f) when r \ne 0......Page 147 6.7. The geometric mean of a function......Page 149 6.9. Holder's inequality for integrals......Page 152 6.10. General properties of the means R_r(f)......Page 156 6.11. General properties of the means R_r(f) (continued)......Page 157 6.12. Convexity of log R_r^r......Page 158 6.13. Minkowski's inequality for integrals......Page 159 6.14. Mean values depending on an arbitrary function......Page 163 6.15. The definition of the Stieltjes integral......Page 165 6.16. Special cases of the Stieltjes integral......Page 167 6.17. Extensions of earlier theorems......Page 168 6.18. The means R_r(f;phi)......Page 169 6.19. Distribution functions......Page 170 6.20. Characterisation of mean values......Page 171 6.21. Remarks on the characteristic properties......Page 173 6.22. Completion of the proof of Theorem 215......Page 174 Miscellaneous theorems and examples......Page 176 7.1. Some general remarks......Page 185 7.2. Object of the present chapter......Page 187 7.3. Example of an inequality corresponding to anunattained extremum......Page 188 7.4. First proof of Theorem 254......Page 189 7.5. Second proof of Theorem 254......Page 191 7.6. Further examples illustrative of variational methods......Page 195 7.7. Further examples: Wirtinger's inequality......Page 197 7.8. An example involving second derivatives......Page 200 Miscellaneous theorems and examples......Page 206 8.2. An inequality for multilinear forms with positive variables and coefficients......Page 209 8.3. A theorem of W. H. Young......Page 211 8.4. Generalisations and analogues......Page 213 8.5. Applications to Fourier series......Page 215 8.6. The convexity theorem for positive multilinear forms......Page 216 8.7. General bilinear forms......Page 217 8.8. Definition of a bounded bilinear form......Page 219 8.9. Some properties of bounded forms in [p, q]......Page 221 8.10. The Faltung of two forms in [p, p']......Page 223 8.11. Some special theorems on forms in [2, 2]......Page 224 8.12. Application to Hilbert's forms......Page 225 8.13. The convexity theorem for bilinear forms with complex variables and coefficients......Page 227 8.14. Further properties of a maximal set (x, y)......Page 229 8.15. Proof of Theorem 295......Page 230 8.16. Applications of the theorem of M. Riesz......Page 232 8.17. Applications to Fourier series......Page 233 Miscellaneous theorems and examples......Page 235 9.1. Hilbert's double series theorem......Page 239 9.2. A general class of bilinear forms......Page 240 9.3. The corresponding theorem for integrals......Page 242 9.4. Extensions of Theorems 318 and 319......Page 244 9.5. Best possible constants: proof of Theorem 317......Page 245 9.6. Further remarks on Hilbert's theorems......Page 247 9.7. Applications of Hilbert's theorems......Page 249 9.8. Hardy's inequality......Page 252 9.9. Further integral inequalities......Page 256 9.10. Further theorems concerning series......Page 259 9.11. Deduction of theorems on series from theorems on integrals......Page 260 9.12. Carleman's inequality......Page 262 9.13. Theorems with 0 <p < 1......Page 263 9.14. A theorem with two parameters p and q......Page 266 Miscellaneous theorems and examples......Page 267 10.1. Rearrangements of finite sets of variables......Page 273 10.2. A theorem concerning the rearrangements of two sets......Page 274 10.3. A second proof of Theorem 368......Page 275 10.4. Restatement of Theorem 368......Page 277 10.5. Theorems concerning the rearrangements of three sets......Page 278 10.6. Reduction of Theorem 373 to a special case......Page 279 10.7. Completion of the proof......Page 281 10.8. Another proof of Theorem 371......Page 283 10.9. Rearrangements of any number of sets......Page 285 10.10. A further theorem on the rearrangement of any number of sets......Page 287 10.12. The rearrangement of a function......Page 289 10.13. On the rearrangement of two functions......Page 291 10.14. On the rearrangement of three functions......Page 292 10.15. Completion of the proof of Theorem 379......Page 294 10.16. An alternative proof......Page 298 10.17. Applications......Page 301 10.18. Another theorem concerning the rearrangementof a function in decreasing order......Page 304 10.19. Proof of Theorem 384......Page 305 Miscellaneous theorems and examples......Page 308 Bibliography......Page 313
Read more…
English [en] · DJVU · 3.2MB · 1934 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11055.0, final score: 167561.27
ia/inequalities0000ghha_f8m9.pdf
Inequalities G. H. Hardy, J. E. Littlewood, G. Polya Cambridge University Press, 1967-01-01
English [en] · PDF · 13.3MB · 1967 · 📗 Book (unknown) · 🚀/ia · Save
base score: 11065.0, final score: 167553.4
duxiu/initial_release/14697260.zip
不等式=INEQUALITIES 英文 (英)G.H.哈代,J.E.利特尔伍德,G.波利亚著, 哈代 (Hardy, G. H.), G. H Hardy 北京/西安:世界图书出版公司, 2018, 2018
Chinese [zh] · English [en] · PDF · 50.8MB · 2018 · 📗 Book (unknown) · 🚀/duxiu/zlibzh · Save
base score: 11062.0, final score: 167541.69
duxiu/ga/data/dbook-new-partial-2024-08-13/补充库/大学堂整理2/146-8/14697260关注读秀更新【微信】zsdxtvip【公众号】星空荐书.zip
不等式=INEQUALITIES 英文 (英)G.H.哈代,J.E.利特尔伍德,G.波利亚著 北京/西安:世界图书出版公司, Ying yin ben, Beijing, 2018
Chinese [zh] · English [en] · PDF · 50.8MB · 2018 · 📗 Book (unknown) · 🚀/duxiu · Save
base score: 11062.0, final score: 167524.69
Your ad here.
lgli/dvd41/Hardy G. H., Littlewood J.E., Polya G. - Inequalities(1934)(314).djvu
Inequalities Hardy G. H., Littlewood J.E., Polya G. 1934
English [en] · DJVU · 7.8MB · 1934 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11050.0, final score: 1.6755639
lgli/M_Mathematics/MC_Calculus/MCat_Advanced calculus/Hardy G.H., Littlewood J.E., Polya G. Inequalities (CUP, 1934)(600dpi)(T)(327s)_MCat_.djvu
Inequalities Hardy G.H., Littlewood J.E., Polya G. Cambridge University Press, 1934
English [en] · DJVU · 3.2MB · 1934 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11052.0, final score: 1.675541
lgli/kolxo3-67/M_Mathematics/MC_Calculus/MCat_Advanced calculus/Hardy G.H., Littlewood J.E., Polya G. Inequalities (2ed., CML, CUP, 1952)(ISBN 9780521052061)(600dpi)(T)(O)(340s)_MCat_.djvu
Inequalities (Cambridge Mathematical Library) Hardy G.H., Littlewood J.E., Polya G. Cambridge University Press (Virtual Publishing), Cambridge Mathematical Library, 2Rev Ed edition, October 1, 1952
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians
Read more…
English [en] · DJVU · 9.0MB · 1952 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11055.0, final score: 1.6754495
ia/inequalities0000hard_s5h4.pdf
Inequalities (Cambridge Mathematical Library) G. H. Hardy, J. E. Littlewood, George Pólya, John E. Littlewood Cambridge University Press (Virtual Publishing), Cambridge University Press, Cambridge, UK, 1988
"This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and exhaustively both the statement and proof of all the standard inequalities of analysis. The authors were well known for their powers of exposition and were able here to make the subject accessible to a wide audience of mathematicians."--Publisher's website
Read more…
English [en] · PDF · 15.0MB · 1988 · 📗 Book (unknown) · 🚀/ia · Save
base score: 11068.0, final score: 1.6752113
nexusstc/Inequalities/9acc936e3629bb6ccc8333861c484a1e.pdf
Inequalities (Cambridge Mathematical Library) G. H. Hardy, J. E. Littlewood, George Pólya, John E. Littlewood Cambridge University Press (Virtual Publishing), Cambridge Mathematical Library, 2, 1934
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians.
Read more…
English [en] · PDF · 8.6MB · 1934 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 1.6750801
Your ad here.
nexusstc/Inequalities/6b0d21f3fe1f521851ee258b88396165.pdf
Inequalities (Cambridge Mathematical Library) G. H. Hardy, J. E. Littlewood, George Pólya, John E. Littlewood Cambridge University Press (Virtual Publishing), Cambridge Mathematical Library, 2, 1934
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians.
Read more…
English [en] · PDF · 8.4MB · 1934 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 1.6749294
duxiu/initial_release/40205131.zip
不等式 : [英文版 世界图书出版公司 世界图书出版公司北京公司, Beijing, 2004
本书是一部经典教科书, 初版于1934年, 第2版于1952年出版, 1952年以后又11次做了重印, 由此可见本书是半个世纪以来不等式领域中一部最具影响力的图书. 目次: 导论;基本平均值;任意函数和凸函数论的平均值;微积分的各种应用;无穷极数;积分;变量微积分的应用;双线性型和多线性型的若干定理;希尔伯特不等式及其模拟和扩张;重排
Read more…
Chinese [zh] · PDF · 9.0MB · 2004 · 📗 Book (unknown) · 🚀/duxiu · Save
base score: 11060.0, final score: 0.17505448
duxiu/initial_release/12075159.zip
不等式 = Inequalities (英)G.H.Hardy,(英)J.E.Littlewood,(美)G.Pólya编著, (英)G. H. Hardy, (英)J. E. Littlewood, (美)G. Polya著 , 越民义译, 越民义, Li te er wu de, Bo li ya, Yue min yi, 哈代, 利特尔伍德, 波利亚, 哈代, 利特尔伍德, 波利亚, 民义·越 北京:人民邮电出版社, 2008, 2008
1 (p1): 第1章 导论 1 (p1-1): 1.1有限的、无限的、积分的不等式 2 (p1-2): 1.2记号 2 (p1-3): 1.3正不等式 3 (p1-4): 1.4齐次不等式 4 (p1-5): 1.5代数不等式的公理基础 5 (p1-6): 1.6可比较的函数 5 (p1-7): 1.7证明的选择 7 (p1-8): 1.8主题的选择 9 (p2): 第2章 初等平均值 9 (p2-1): 2.1常用平均 10 (p2-2): 2.2加权平均 11 (p2-3): 2.3 ?r (a)的极限情形 12 (p2-4): 2.4 Cauchy不等式 13 (p2-5): 2.5算术平均定理和几何平均定理 15 (p2-6): 2.6平均值定理的其他证明 17 (p2-7): 2.7 Ho1der不等式及其推广 19 (p2-8): 2.8 Holder不等式及其推广(续) 21 (p2-9): 2.9平均值?r (a)的一般性质 23 (p2-10): 2.10和数(a) 24 (p2-11): 2.11 Minkowski不等式 26 (p2-12): 2.12 Minkowski不等式的伴随不等式 27 (p2-13): 2.13诸基本不等式的解说和应用 31 (p2-14): 2.14诸基本不等式的归纳证明 32 (p2-15): 2.15 与定理37有关的初等不等式 35 (p2-16): 2.16定理3的初等证明 35 (p2-17): 2.17 Tchebychef不等式 37 (p2-18): 2.18 Muirhead定理 38 (p2-19): 2.19 Muirhead定理的证明 40 (p2-20): 2.20两个备择定理 41 (p2-21): 2.21关于对称平均的其他定理 42 (p2-22): 2.22 n个正数的初等对称函数 45 (p2-23): 2.23关于定型的一点说明 47 (p2-24): 2.24关于严格正型的一个定理 50 (p2-25): 2.25各种定理及特例 55 (p3): 第3章 关于任意函数的平均,凸函数论 55 (p3-1): 3.1定义 56 (p3-2): 3.2等价平均 57 (p3-3): 3.3平均?r的特征性质 59 (p3-4): 3.4可比较性 59 (p3-5): 3.5凸函数 60 (p3-6): 3.6连续凸函数 62 (p3-7): 3.7关于凸函数的另一个定义 63 (p3-8): 3.8诸基本不等式中的等号 64 (p3-9): 3.9定理85的改述和推广 65 (p3-10): 3.10二阶可微的凸函数 66 (p3-11): 3.11二阶可微的凸函数的性质的应用 67 (p3-12): 3.12多元凸函数 69 (p3-13): 3.13 Ho1der不等式的推广 70 (p3-14): 3.14关于单调函数的一些定理 71 (p3-15): 3.15 关于任意函数的和数:Jensen不等式的推广 72 (p3-16): 3.16 Minkowski不等式的推广 75 (p3-17): 3.17集合的比较 77 (p3-18): 3.18凸函数的一般性质 79 (p3-19): 3.19连续凸函数的其他性质 81 (p3-20): 3.20不连续的凸函数 82 (p3-21): 3.21各种定理及特例 87 (p4): 第4章 微积分学的若干应用 87 (p4-1): 4.1导引 87 (p4-2): 4.2中值定理的应用 88 (p4-3): 4.3初等微分学的进一步应用 91 (p4-4): 4.4一元函数的极大和极小 91 (p4-5): 4.5 Taylor级数的使用 92 (p4-6): 4.6多元函数的极大极小理论的应用 94 (p4-7): 4.7级数与积分的比较 95 (p4-8): 4.8 W.H.Young的一个不等式 98 (p5): 第5章 无穷级数 98 (p5-1): 5.1导引 99 (p5-2): 5.2平均值?r 101 (p5-3): 5.3定理3和定理9的推广 102 (p5-4): 5.4 Holder不等式及其推广 104 (p5-5): 5.5平均值r(续) 104 (p5-6): 5.6和数?r 105 (p5-7): 5.7 Minkowski不等式 106 (p5-8): 5.8 Tchebychef不等式 106 (p5-9): 5.9小结 106 (p5-10): 5.10各种定理及特例 109 (p6): 第6章 积分 109 (p6-1): 6.1关于Lebesgue积分的一些初步说明 110 (p6-2): 6.2关于零集和零函数的说明 111 (p6-3): 6.3有关积分的进一步说明 113 (p6-4): 6.4关于证法的说明 114 (p6-5): 6.5关于方法的进一步说明:Schwarz不等式 115 (p6-6): 6.6当r?0时平均值?r(f)的定义 117 (p6-7): 6.7函数的几何平均 119 (p6-8): 6.8几何平均的其他性质 120 (p6-9): 6.9关于积分的Ho1der不等式 123 (p6-10): 6.10平均?r(f)的一般性质 125 (p6-11): 6.11平均?r(f)的一般性质(续) 126 (p6-12): 6.12 1n?r(f)的凸性 126 (p6-13): 6.13关于积分的Minkowski不等式 131 (p6-14): 6.14关于任意函数的平均值 133 (p6-15): 6.15 Stieltjes积分的定义 134 (p6-16): 6.16 Stieltjes积分的特别情形 135 (p6-17): 6.17前面一些定理的推广 136 (p6-18): 6.18平均?r(f;φ) 137 (p6-19): 6.19分布函数 138 (p6-20): 6.20平均值的特征化 139 (p6-21): 6.21关于特征性质的说明 140 (p6-22): 6.22完成定理215的证明 142 (p6-23): 6.23各种定理及特例 151 (p7): 第7章 变分法的一些应用 151 (p7-1): 7.1一些一般性的说明 152 (p7-2): 7.2本章的目的 153 (p7-3): 7.3对应于不可达到的极值的不等式的例子 154 (p7-4): 7.4定理254的第一个证明 156 (p7-5): 7.5定理254的第二个证明 159 (p7-6): 7.6用来阐明变分法的其他例子 161 (p7-7): 7.7进一步的例子:Wiinger不等式 164 (p7-8): 7.8包含二阶导数的一个例子 169 (p7-9): 7.9一个较简单的定理 169 (p7-10): 7.10各种定理及特例 172 (p8): 第8章 关于双线性形式和多线性形式的一些定理 172 (p8-1): 8.1导引 172 (p8-2): 8.2带有正变量和正系数的多线性形式的不等式 174 (p8-3): 8.3 W.H.Young的一个定理 176 (p8-4): 8.4推广和类似情形 178 (p8-5): 8.5在Fourier级数中的应用 179 (p8-6): 8.6关于正的多线性形式的凸性定理 180 (p8-7): 8.7一般的双线性形式 182 (p8-8): 8.8有界双线性形式的定义 183 (p8-9): 8.9 [P,q]中有界形式的一些性质 184 (p8-10): 8.10 [P,P']中两种形式的卷积 186 (p8-11): 8.11关于[2,2]中诸形式的一些特有定理 187 (p8-12): 8.12在Hilbert形式中的应用 188 (p8-13): 8.13关于带有复变量和系数的双线性形式的凸性定理 190 (p8-14): 8.14最大组(x,y)的进一步的性质 191 (p8-15): 8.15定理295的证明 193 (p8-16): 8.16 M.Riesz定理的应用 194 (p8-17): 8.17在Fourier级数上的应用 195 (p8-18): 8.18各种定理及特例 200 (p9): 第9章Hilbe不等式及其类似情形和推广 200 (p9-1): 9.1 Hilbe二重级数定理 201 (p9-2): 9.2一类广泛的双线性形式 203 (p9-3): 9.3关于积分的相应定理 204 (p9-4): 9.4定理318和定理319的推广 205 (p9-5): 9.5最佳常数:定理317的证明 207 (p9-6): 9.6关于Hilbert定理的进一步论述 209 (p9-7): 9.7 Hilbert定理的应用 212 (p9-8): 9.8 Hardy不等式 215 (p9-9): 9.9进一步的积分不等式 218 (p9-10): 9.10关于级数的进一步定理 219 (p9-11): 9.11从关于积分的定理推出关于级数的定理 220 (p9-12): 9.12 Carleman不等式 222 (p9-13): 9.13当0<p<1时的定理 224 (p9-14): 9.14带有两个参数P和q的一个定理 225 (p9-15): 9.15 各种定理及特例 231 (p10): 第10章 重新排列 231 (p10-1): 10.1有限变量集的重新排列 232 (p10-2): 10.2有关两个集的重新排列的一个定理 233 (p10-3): 10.3定理368的第二个证明 234 (p10-4): 10.4定理368的改述 235 (p10-5): 10.5有关三个集的重新排列定理 236 (p10-6): 10.6将定理373化为一种特殊情形 238 (p10-7): 10.7证明的完成 240 (p10-8): 10.8定理371的另一种证明 242 (p10-9): 10.9任意多个集的重新排列 243 (p10-10): 10.10关于任意多个集的重新排列的另一个定理 245 (p10-11): 10.11应用 245 (p10-12): 10.12函数的重新排列 247 (p10-13): 10.13关于两个函数的重新排列 247 (p10-14): 10.14关于三个函数的重新排列 249 (p10-15): 10.15 完成定理379的证明 252 (p10-16): 10.16定理379的另一个证明 255 (p10-17): 10.17应用 258 (p10-18): 10.18关于将函数按降序重新排列的另外一个定理 259 (p10-19): 10.19定理384的证明 262 (p10-20): 10.20各种定理及特例 267 (p11): 附录A关于严格正型 270 (p12): 附录B Thorin关于定理的证明及推广 272 (p13): 附录C关于Hilbert不等式 274 (p14): 参考文献
Read more…
Chinese [zh] · PDF · 56.5MB · 2008 · 📗 Book (unknown) · 🚀/duxiu/zlibzh · Save
base score: 11063.0, final score: 0.17496754
nexusstc/不等式/75d725e3d707f22587dd14c42c1e3277.pdf
不等式 = Inequalities (英)G. H. Hardy, (英)J. E. Littlewood, (美)G. Polya著 ; 越民义译; 越民义; Li te er wu de; Bo li ya; Yue min yi; 哈代; 利特尔伍德; 波利亚 人民邮电出版社, 图灵数学·统计学丛书, 2, 2008
越民义1921年6月生,贵州省贵阳人。1945年毕业于浙江大学数学系。早年曾在浙江大学数学系、贵州大学数理系任教。1951—1990年,在中国科学院数学研究所、应用数学研究所做研究工作。研究员曾担任《中国大百科全书》数学卷运筹学分卷主编,《应用数学学报》副主编(1978一1985)、主编(1985—1995),以及《运筹学学报》主编(1982年至今)。著作有《组合优化导论》(浙江科学技术出版社,2001)等。
Read more…
Chinese [zh] · PDF · 20.2MB · 2008 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11060.0, final score: 0.1749014
upload/newsarch_ebooks_2025_10/2019/03/31/0521358809.epub
Inequalities G. H. Hardy, J. E. Littlewood and G. Pólya Cambridge University Press
EPUB · 21.7MB · 📗 Book (unknown) · 🚀/upload · Save
base score: 10953.0, final score: 0.17472735
Your ad here.
upload/duxiu_main2/补充库/大学堂整理3/下载_20223032346/《不等式》_12075159关注读秀更新【微信】zsdxtvip【公众号】星空荐书.pdf
不等式 (英)G.H.Hardy,(英)J.E.Littlewood,(美)G.Pólya编著 北京:人民邮电出版社, 2008
1 (p1): 第1章 导论 1 (p1-1): 1.1有限的、无限的、积分的不等式 2 (p1-2): 1.2记号 2 (p1-3): 1.3正不等式 3 (p1-4): 1.4齐次不等式 4 (p1-5): 1.5代数不等式的公理基础 5 (p1-6): 1.6可比较的函数 5 (p1-7): 1.7证明的选择 7 (p1-8): 1.8主题的选择 9 (p2): 第2章 初等平均值 9 (p2-1): 2.1常用平均 10 (p2-2): 2.2加权平均 11 (p2-3): 2.3 ?r (a)的极限情形 12 (p2-4): 2.4 Cauchy不等式 13 (p2-5): 2.5算术平均定理和几何平均定理 15 (p2-6): 2.6平均值定理的其他证明 17 (p2-7): 2.7 Ho1der不等式及其推广 19 (p2-8): 2.8 Holder不等式及其推广(续) 21 (p2-9): 2.9平均值?r (a)的一般性质 23 (p2-10): 2.10和数(a) 24 (p2-11): 2.11 Minkowski不等式 26 (p2-12): 2.12 Minkowski不等式的伴随不等式 27 (p2-13): 2.13诸基本不等式的解说和应用 31 (p2-14): 2.14诸基本不等式的归纳证明 32 (p2-15): 2.15 与定理37有关的初等不等式 35 (p2-16): 2.16定理3的初等证明 35 (p2-17): 2.17 Tchebychef不等式 37 (p2-18): 2.18 Muirhead定理 38 (p2-19): 2.19 Muirhead定理的证明 40 (p2-20): 2.20两个备择定理 41 (p2-21): 2.21关于对称平均的其他定理 42 (p2-22): 2.22 n个正数的初等对称函数 45 (p2-23): 2.23关于定型的一点说明 47 (p2-24): 2.24关于严格正型的一个定理 50 (p2-25): 2.25各种定理及特例 55 (p3): 第3章 关于任意函数的平均,凸函数论 55 (p3-1): 3.1定义 56 (p3-2): 3.2等价平均 57 (p3-3): 3.3平均?r的特征性质 59 (p3-4): 3.4可比较性 59 (p3-5): 3.5凸函数 60 (p3-6): 3.6连续凸函数 62 (p3-7): 3.7关于凸函数的另一个定义 63 (p3-8): 3.8诸基本不等式中的等号 64 (p3-9): 3.9定理85的改述和推广 65 (p3-10): 3.10二阶可微的凸函数 66 (p3-11): 3.11二阶可微的凸函数的性质的应用 67 (p3-12): 3.12多元凸函数 69 (p3-13): 3.13 Ho1der不等式的推广 70 (p3-14): 3.14关于单调函数的一些定理 71 (p3-15): 3.15 关于任意函数的和数:Jensen不等式的推广 72 (p3-16): 3.16 Minkowski不等式的推广 75 (p3-17): 3.17集合的比较 77 (p3-18): 3.18凸函数的一般性质 79 (p3-19): 3.19连续凸函数的其他性质 81 (p3-20): 3.20不连续的凸函数 82 (p3-21): 3.21各种定理及特例 87 (p4): 第4章 微积分学的若干应用 87 (p4-1): 4.1导引 87 (p4-2): 4.2中值定理的应用 88 (p4-3): 4.3初等微分学的进一步应用 91 (p4-4): 4.4一元函数的极大和极小 91 (p4-5): 4.5 Taylor级数的使用 92 (p4-6): 4.6多元函数的极大极小理论的应用 94 (p4-7): 4.7级数与积分的比较 95 (p4-8): 4.8 W.H.Young的一个不等式 98 (p5): 第5章 无穷级数 98 (p5-1): 5.1导引 99 (p5-2): 5.2平均值?r 101 (p5-3): 5.3定理3和定理9的推广 102 (p5-4): 5.4 Holder不等式及其推广 104 (p5-5): 5.5平均值r(续) 104 (p5-6): 5.6和数?r 105 (p5-7): 5.7 Minkowski不等式 106 (p5-8): 5.8 Tchebychef不等式 106 (p5-9): 5.9小结 106 (p5-10): 5.10各种定理及特例 109 (p6): 第6章 积分 109 (p6-1): 6.1关于Lebesgue积分的一些初步说明 110 (p6-2): 6.2关于零集和零函数的说明 111 (p6-3): 6.3有关积分的进一步说明 113 (p6-4): 6.4关于证法的说明 114 (p6-5): 6.5关于方法的进一步说明:Schwarz不等式 115 (p6-6): 6.6当r?0时平均值?r(f)的定义 117 (p6-7): 6.7函数的几何平均 119 (p6-8): 6.8几何平均的其他性质 120 (p6-9): 6.9关于积分的Ho1der不等式 123 (p6-10): 6.10平均?r(f)的一般性质 125 (p6-11): 6.11平均?r(f)的一般性质(续) 126 (p6-12): 6.12 1n?r(f)的凸性 126 (p6-13): 6.13关于积分的Minkowski不等式 131 (p6-14): 6.14关于任意函数的平均值 133 (p6-15): 6.15 Stieltjes积分的定义 134 (p6-16): 6.16 Stieltjes积分的特别情形 135 (p6-17): 6.17前面一些定理的推广 136 (p6-18): 6.18平均?r(f;φ) 137 (p6-19): 6.19分布函数 138 (p6-20): 6.20平均值的特征化 139 (p6-21): 6.21关于特征性质的说明 140 (p6-22): 6.22完成定理215的证明 142 (p6-23): 6.23各种定理及特例 151 (p7): 第7章 变分法的一些应用 151 (p7-1): 7.1一些一般性的说明 152 (p7-2): 7.2本章的目的 153 (p7-3): 7.3对应于不可达到的极值的不等式的例子 154 (p7-4): 7.4定理254的第一个证明 156 (p7-5): 7.5定理254的第二个证明 159 (p7-6): 7.6用来阐明变分法的其他例子 161 (p7-7): 7.7进一步的例子:Wiinger不等式 164 (p7-8): 7.8包含二阶导数的一个例子 169 (p7-9): 7.9一个较简单的定理 169 (p7-10): 7.10各种定理及特例 172 (p8): 第8章 关于双线性形式和多线性形式的一些定理 172 (p8-1): 8.1导引 172 (p8-2): 8.2带有正变量和正系数的多线性形式的不等式 174 (p8-3): 8.3 W.H.Young的一个定理 176 (p8-4): 8.4推广和类似情形 178 (p8-5): 8.5在Fourier级数中的应用 179 (p8-6): 8.6关于正的多线性形式的凸性定理 180 (p8-7): 8.7一般的双线性形式 182 (p8-8): 8.8有界双线性形式的定义 183 (p8-9): 8.9 [P,q]中有界形式的一些性质 184 (p8-10): 8.10 [P,P']中两种形式的卷积 186 (p8-11): 8.11关于[2,2]中诸形式的一些特有定理 187 (p8-12): 8.12在Hilbert形式中的应用 188 (p8-13): 8.13关于带有复变量和系数的双线性形式的凸性定理 190 (p8-14): 8.14最大组(x,y)的进一步的性质 191 (p8-15): 8.15定理295的证明 193 (p8-16): 8.16 M.Riesz定理的应用 194 (p8-17): 8.17在Fourier级数上的应用 195 (p8-18): 8.18各种定理及特例 200 (p9): 第9章Hilbe不等式及其类似情形和推广 200 (p9-1): 9.1 Hilbe二重级数定理 201 (p9-2): 9.2一类广泛的双线性形式 203 (p9-3): 9.3关于积分的相应定理 204 (p9-4): 9.4定理318和定理319的推广 205 (p9-5): 9.5最佳常数:定理317的证明 207 (p9-6): 9.6关于Hilbert定理的进一步论述 209 (p9-7): 9.7 Hilbert定理的应用 212 (p9-8): 9.8 Hardy不等式 215 (p9-9): 9.9进一步的积分不等式 218 (p9-10): 9.10关于级数的进一步定理 219 (p9-11): 9.11从关于积分的定理推出关于级数的定理 220 (p9-12): 9.12 Carleman不等式 222 (p9-13): 9.13当0<p<1时的定理 224 (p9-14): 9.14带有两个参数P和q的一个定理 225 (p9-15): 9.15 各种定理及特例 231 (p10): 第10章 重新排列 231 (p10-1): 10.1有限变量集的重新排列 232 (p10-2): 10.2有关两个集的重新排列的一个定理 233 (p10-3): 10.3定理368的第二个证明 234 (p10-4): 10.4定理368的改述 235 (p10-5): 10.5有关三个集的重新排列定理 236 (p10-6): 10.6将定理373化为一种特殊情形 238 (p10-7): 10.7证明的完成 240 (p10-8): 10.8定理371的另一种证明 242 (p10-9): 10.9任意多个集的重新排列 243 (p10-10): 10.10关于任意多个集的重新排列的另一个定理 245 (p10-11): 10.11应用 245 (p10-12): 10.12函数的重新排列 247 (p10-13): 10.13关于两个函数的重新排列 247 (p10-14): 10.14关于三个函数的重新排列 249 (p10-15): 10.15 完成定理379的证明 252 (p10-16): 10.16定理379的另一个证明 255 (p10-17): 10.17应用 258 (p10-18): 10.18关于将函数按降序重新排列的另外一个定理 259 (p10-19): 10.19定理384的证明 262 (p10-20): 10.20各种定理及特例 267 (p11): 附录A关于严格正型 270 (p12): 附录B Thorin关于定理的证明及推广 272 (p13): 附录C关于Hilbert不等式 274 (p14): 参考文献
Read more…
Chinese [zh] · PDF · 56.5MB · 2008 · 📗 Book (unknown) · 🚀/upload · Save
base score: 10960.0, final score: 0.17456345
23 partial matches
lgli/M_Mathematics/MC_Calculus/MCat_Advanced calculus/Hardi G.G., Litlvud Dzh.E., Poj'a G. (_Hardy,Littlewood,Polya_) Neravenstva (IL, 1948)(ru)(600dpi)(K)(T)(O)(456s)_MCat_.djvu
Неравенства Харди Г.Г., Литлвуд Дж.Е., Пойа Г.(Hardy,Littlewood,Polya) Иностранная Литература, 1948
До выхода в свет в 1934 г. английского оригинала предлагаемой русскому читателю книги Г. Харди, Дж. Литлвуда и Г. Полиа в мировой математической литературе не существовало монографии, посвящённой неравенствам как таковым. Появление этой книги способствовало повышению интереса к неравенствам среди математиков и вызвало ряд новых работ в этой области. Несмотря на то, что многие из рассмотренных в этой книге неравенств приводятся в качестве вспомогательного аппарата в уже существующих на русском языке книгах по различным вопросам, и несмотря на то, что выбор материала в предлагаемой книге по необходимости ограничен и далеко не содержит всех типов неравенств, применяемых в анализе, книга эта оказалась весьма полезной не только тем читателям, которые заинтересованы в неравенствах как в специальном предмете математического исследования, но и тем, для которых неравенства являются лишь необходимым орудием при исследовании других вопросов. Содержание настоящей книги достаточно полно освещено в предисловии авторов и во введении. Книга снабжена дополнениями, которые содержат новые результаты, появившиеся с 1934 г. Эти дополнения никоим образом не претендуют на полноту; они содержат лишь отчёты о тех новых исследованиях в области неравенств, которые по своему характеру близки к содержанию книги. Дополнения I, V, VI, VII, XI, XII, XIII написаны С. Б. Стечкиным, дополнения II, III, VIII, X, XIV, XV — переводчиком. Остальные дополнения написаны совместно. Часть результатов, содержащихся в дополнениях, публикуется здесь впервые.
Read more…
Russian [ru] · DJVU · 5.8MB · 1948 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11050.0, final score: 75.16537
nexusstc/Collected Papers of G. H. Hardy, Volume I; including joint papers with J. E. Littlewood and others. Diophantine Approximation; Additive Number Theory; Complete List of Hardy's Mathematical Papers/8aac8e9d84825d3d510f5b074bac9f29.djvu
Collected Papers of G. H. Hardy, Volume I; including joint papers with J. E. Littlewood and others. Diophantine Approximation; Additive Number Theory; Complete List of Hardy's Mathematical Papers Godfrey Harold Hardy, John Edensor Littlewood Clarendon Press, 1966
Preface Acknowledgements Editorial Note Contents of Volume I Godfrey Harold Hardy, by E. C. TITCHMARSH 1. DIOPHANTINE APPROXIMATION Introduction 1912, 4 (with J. E. Littlewood). Some problems of Diophantine approximation. Proceedings of the 5th International Congress of Mathematicians, Cambridge, 1912, i. 223-9. Published 1913. 1914, 2 (with J.E. Littlewood). Some problems of Diophantine approximation. I. The fractional part of n^k θ. Acta Mathematica, 37, 155-91. 1914, 3 (with J.E. Littlewood). Some problems of Diophantine approximation. II. The trigonometrical series associated with the elliptic θ-functions. Acta Mathematica, 37, 193-238. 1916, 3 (with J.E. Littlewood). Some problems of Diophantine approximation: A remarkable trigonometrical series. Proceedings of the National Academy of Sciences, 2, 583-6. 1916, 9 (with J.E. Littlewood). Some problems of Diophantine approximation: The series ∑ e(λ_n) and the distribution of the points (λ_n α). Proceedings of the National Academy of Sciences, 3, 84-88. Published 1917. 1919, 4. A problem of Diophantine approximation. Journal of the Indian Mathematical Society, 11, 162-6. 1922, 5 (with J.E. Littlewood). Some problems of Diophantine approximation: A further note on the trigonometrical series associated with the elliptic thetafunctions. Proceedings of the Cambridge Philosophical Society, 21, 1-5. 1922, 6 (with J.E. Littlewood). Some problems of Diophantine approximation: The lattice-points of a right-angled triangle. Proceedings of the London Mathematieal Society, (2) 20, 15-36. 1922, 9 (with J.E. Littlewood). Some problems of Diophantine approximation: The lattice-points of a right-angled triangle. (Second memoir.) Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, 1, 212-49. Published 1921. 1923, 3 (with J.E. Littlewood). Some problems of Diophantine approximation: The analytic character of the sum of a Dirichlet's series considered by Hecke. Abhandlungen aus dem Mathernatischen Seminar der Hamburgischen Universität, 3, 57-68. 1923, 4 (with J.E. Littlewood). Some problems of Diophantine approximation: The analytic properties of certain Dirichlet's series associated with the distribution of numbers to modulus unity. Transactions of the Cambridge Philosophical Society, 22, 519- 33. 1925, 4 (with J.E. Littlewood). Some problems of Diophantine approximation: An additional note on the trigonometrical series associated with the elliptic theta-functions. Acta Mathematica, 47, 189-98. Published 1926. 1930, 3 (with J. E. Littlewood). Some problems of Diophantine approximation: A series of cosecants. Bulletin of the Calcatta Mathematical Society, 20, 251-66. 1946, 1 (with J. E. Littlewood). Notes on the theory of series (XXIV): A curious power series. Proceedings of the Cambridge Philosophical Society, 42, 85-90. 2. ADDITIVE NUMBER THEORY (a) Combinatory analysis and sums of squares Introduction 1916, 10. Asymptotic formulae in combinatory analysis. Quatrième Congrès des Mathématiciens Scandinaves, Stockholm, 1916, 45-53. Published 1920. 1917, 1 (with S. Ramanujan). Une formule asymptotique pour le nombre des partitions de n. Comptes Rendus, 164, 35-38. 1917, 4 (with S. Ramanujan). Asymptotic formulae for the distribution of integers of various types. Proceedings of the London Mathematical Society, (2) 16, 112-32. 1918, 2 (with S. Ramanujan). On the coefficients in the expansions of certain modular functions. Proceedings of the Royal Society, A, 95, 144-55. 1918, 5 (with S. Ramanujan). Asymptotic formulae in combinatory analysis. Proceedings of the London Mathematical Society, (2) 17, 75-115. 1918, 10. On the representation of a number as the sum of any number of squares, and in particular of five or seven. Proceedings of the National Academy of Sciences, 4, 189-93. 1920, 10. On the representation of a number as the sum of any number of squares, and in particular of five. Transactions of the American Mathematical Society, 21, 255-84. (b) Waring's Problem Introduction 1920, 2 (with J. E. Littlewood). A new solution of Waring's Problem. Quarterly Journal of Mathematics, 4B, 272-93. 1920, 5 (with J. E. Littlewood). Some problems of 'Partitio Numerorum': I. A new solution of Waring's Problem. Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen, Math. -phys. Klasse, 1920, 33-54. 1921, 1 (with J. E. Littlewood). Some problems of 'Partitio Numerorum': II. Proof that every large number is the sum of at most 21 biquadrates. Mathematische Zeitschrift, 9, 14-27. Published 1920. 1922, 4 (with J. E. Littlewood). Some problems of 'Partitio Numerorum': IV. The singular series in Waring's Problem and the value of the number G(k). Mathematische Zeitschrift, 12, 161-88. 1925, 1 (with J. E. Littlewood). Some problems of 'Partitio Numerorum': VI. Further researches in Waring's Problem. Mathematische Zeitschrift, 23, 1-37. 1928, 4 (with J. E. Littlewood). Some problems of 'Partitio Numerorum': VIII. The number Γ(k) in Waring's Problem. Proceedings of the London Mathematical Society, (2) 28, 518-42. (c) Goldbach's Problem Introduction 1919, 1 (with J. E. Littlewood). Note on Messrs. Shah and Wilson's paper entitled: 'On an empirical formula connected with Goldbach's Theorem'. Proceedings of the Cambridge Philosophical Society, 19, 245-54. 1922, 1. Goldbach's Theorem. Matematisk Tidsskrift B, 1922, 1-16. 1922, 3 (with J. E. Littlewood). Some problems of 'Partitio Numerorum': III. On the expression of a number as a sum of primes. Acta Mathematica, 44, 1-70. 1922, 8 (with J. E. Littlewood). Summation of a certain multiple series. Proceedings of the London Mathematical Society, (2) 20, xxx. Published 1921. 1924, 6 (with J. E. Littlewood). Some problems of 'Partitio Numerorum': V. A further contribution to the study of Goldbach's Problem. Proceedings of the London Mathematical Society, (2) 22, 46-56. Published 1923. (d) Inaugural Lecture (Oxford 1920) 1920, 11. Some famous problems of the Theory of Numbers and in particular Waring's Problem. Arrangement of the Volumes. Complete list of Hardy's mathematical papers.
Read more…
English [en] · DJVU · 7.0MB · 1966 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11055.0, final score: 70.63232
lgli/N:\!genesis_files_for_add\_add\kolxo3\94\M_Mathematics\MW_Collected works\Hardy G.H. Collected papers of G.H. Hardy, including joint papers with J.E. Littlewood and others. Vol.1 (OUP, 1972)(K)(T)(707s)_MW_.djvu
Collected papers of G.H. Hardy, including joint papers with J.E. Littlewood and others. Vol.1 G. H. Hardy Oxford University Press, 1972
English [en] · DJVU · 7.0MB · 1972 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11052.0, final score: 70.437454
lgli/dvd68/Hardy G. H., Littlewood J. E. Some Problems of Diophantine Approximation A Remarkable Trigonometrical Series (1916)(en)(4s).pdf
Some Problems of Diophantine Approximation: A Remarkable Trigonometrical Series Hardy, G. H.; Littlewood, J. E. National Academy of Sciences; Proceedings of the National Academy of Sciences; Oxford University Press (OUP); Publons; ScienceOpen (ISSN 0027-8424), Proceedings of the National Academy of Sciences, #10, 2, pages 583-586, 1916 oct 01
English [en] · PDF · 0.4MB · 1916 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/scihub/zlib · Save
base score: 11052.0, final score: 67.15372
lgli/dvd68/Hardy G. H., Littlewood J. E. Some Problems of Diophantine Approximation The Series and the Distribution of the Points (1916)(en)(5s).pdf
Some Problems of Diophantine Approximation: The Series and the Distribution of the Points Hardy, G. H.; Littlewood, J. E. National Academy of Sciences; Proceedings of the National Academy of Sciences; Oxford University Press (OUP); Publons; ScienceOpen (ISSN 0027-8424), 1916
English [en] · PDF · 0.5MB · 1916 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/scihub/zlib · Save
base score: 11052.0, final score: 66.47286
nexusstc/Collected papers of G.H. Hardy; including joint papers with J.E. Littlewood and others/0ed496e0bf2e43cc3bcc5110bb5ba055.pdf
Collected papers of G.H. Hardy; including joint papers with J.E. Littlewood and others vol 5 edited by a committee appointed by the London Mathematical Society Oxford, Clarendon Press, vol 1, 1972
Volume 1 : Diophantine Approximation
Read more…
English [en] · PDF · 67.7MB · 1972 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11065.0, final score: 64.36083
ia/collectedpaperso0000hard.pdf
Collected papers of G. H. Hardy: including joint papers with J. E. Littlewood and others edited by a committee appointed by the London Mathematical Society Oxford: Clarendon Press, Oxford, England, 1966
v. : "Complete list of Hardy's mathematical papers": v. 1, p. 683-699; v. 3, p. 731-747 Includes bibliographical references
Read more…
English [en] · PDF · 33.1MB · 1966 · 📗 Book (unknown) · 🚀/ia · Save
base score: 11068.0, final score: 54.939636
ia/collectedpaperso0003hard.pdf
Collected papers of G. H. Hardy: including joint papers with J. E. Littlewood and others edited by a committee appointed by the London Mathematical Society Oxford: Clarendon Press, Oxford, England, 1966
v. : "Complete list of Hardy's mathematical papers": v. 1, p. 683-699; v. 3, p. 731-747 Includes bibliographical references
Read more…
English [en] · PDF · 40.2MB · 1966 · 📗 Book (unknown) · 🚀/ia · Save
base score: 11068.0, final score: 54.939636
ia/collectedpaperso0002hard.pdf
Collected papers of G. H. Hardy: including joint papers with J. E. Littlewood and others edited by a committee appointed by the London Mathematical Society Oxford: Clarendon Press, Oxford, England, 1966
v. : "Complete list of Hardy's mathematical papers": v. 1, p. 683-699; v. 3, p. 731-747 Includes bibliographical references
Read more…
English [en] · PDF · 36.2MB · 1966 · 📗 Book (unknown) · 🚀/ia · Save
base score: 11068.0, final score: 54.710556
ia/collectedpaperso0001hard.pdf
Collected papers of G. H. Hardy: including joint papers with J. E. Littlewood and others edited by a committee appointed by the London Mathematical Society Oxford: Clarendon Press, Oxford, England, 1966
v. : "Complete list of Hardy's mathematical papers": v. 1, p. 683-699; v. 3, p. 731-747 Includes bibliographical references
Read more…
English [en] · PDF · 38.0MB · 1966 · 📗 Book (unknown) · 🚀/ia · Save
base score: 11068.0, final score: 54.60072
ia/inequalities0000ghha.pdf
inequalities g. h. hardy, j. e. littewood, g. polya the university press cambridge, 1934
English [en] · PDF · 14.0MB · 1934 · 📗 Book (unknown) · 🚀/ia · Save
base score: 11065.0, final score: 54.01626
nexusstc/Collected Papers of G. H. Hardy - Volume 3/444941c1da60b878c29f46fc3c5f8110.pdf
Collected Papers of G. H. Hardy - Volume 3 Godfrey Harold Hardy; John Edensor Littlewood IRL Press at Oxford University Press, Collected Papers of G. H. Hardy, 3, 1969, 1969
Volume 3 of Collected Papers of G. H. Hardy, including joint papers with J. E. Littlewood and others, edited by a committee appointed by the London Mathematical Society.This volume includes papers about:1. Trigonometric series. (a) Convergence of a Fourier series or its conjugate, (b) Summability of a Fourier series or its conjugate, (c) The Young-Hausdorff inequalities, (d) Special trigonometric series, (e) Other papers on trigonometric series.2. Mean values of power series
Read more…
English [en] · PDF · 23.5MB · 1969 · 📘 Book (non-fiction) · 🚀/nexusstc/zlib · Save
base score: 11068.0, final score: 49.586193
lgli/M_Mathematics/MC_Calculus/MCat_Advanced calculus/Everitt W.N. (ed.) Inequalities.. Fifty years on from Hardy, Littlewood, and Polya (Dekker, 1991)(ISBN 082478488X)(400dpi)(T)(284s)_MCat_.djvu
Inequalities : fifty years on from Hardy, Littlewood, and Pólya : proceedings of the international conference Everitt, W. N.; London Mathematical Society Marcel Dekker Incorporated, Lecture notes in pure and applied mathematics ;, v. 129, New York, New York State, 1991
Proceedings of an international conference organized by the London Mathematical Society, held July 1987 at the U. of Birmingham, and dominated by the ghosts of Hardy, Littlewood and Polya, whose Inequalities (still the primary reference in the field) appeared in 1934. Thirteen essays summarize subse
Read more…
English [en] · DJVU · 2.4MB · 1991 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11055.0, final score: 47.71955
lgli/P_Physics/PPop_Popular-level/Andrade e' Silva Zh., Loshak Zh. (_Andrade e Silva J., Lochak G._) Polya, chasticy, kvanty (Nauka, 1972)(ru)(600dpi)(K)(T)(O)(194s)_PPop_.djvu
Поля, частицы, кванты Андраде э Силва Ж., Лошак Ж.(Andrade e Silva J., Lochak G.) Наука, 1972
Russian [ru] · DJVU · 4.5MB · 1972 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11047.0, final score: 45.500725
ia/collectedpaperso0005godf.pdf
Collected papers of G.H. Hardy : including joint papers with J.E. Littlewood and others. Vol. 5 Godfrey Harold Hardy, J. E. Littlewood, London Mathematical Society Staff Oxford University Press, Incorporated; Oxford University Press, Oxford, 1972
English [en] · PDF · 27.8MB · 1972 · 📗 Book (unknown) · 🚀/ia · Save
base score: 11065.0, final score: 41.085224
lgli/F:/Library.nu/58/_288782.58b6ffddc84f7c41f2617be5510b4a35.djvu
Inequalities : fifty years on from Hardy, Littlewood, and Pólya : proceedings of the international conference W. N Everitt; London Mathematical Society; International Conference on Inequalities CRC Press, Lecture Notes in Pure and Applied Mathematics 129, 1, 1990
Proceedings of an international conference organized by the London Mathematical Society, held July 1987 at the U. of Birmingham, and dominated by the ghosts of Hardy, Littlewood and Polya, whose Inequalities (still the primary reference in the field) appeared in 1934. Thirteen essays summarize subse
Read more…
English [en] · DJVU · 24.2MB · 1990 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11055.0, final score: 41.084183
upload/wll/ENTER/Science/Physics & Math/1 - More Books on IT & Math/Number theory/Introduction to the Theory of Numbers 4th ed. - G. Hardy, .djvu
An Introduction to the Theory of Numbers Hardy G.H., Wright E.M. 4, 1975
English [en] · DJVU · 4.4MB · 1975 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
base score: 11050.0, final score: 40.941746
upload/wll/ENTER/Science/Physics & Math/1 - More Books on IT & Math/Number theory/AN INTRODUCTION TO THE THEORY OF NUMBERS - hardy & wright.pdf
Introduction to the Theory of Numbers G. Hardy, E. Wright 4, 1968
Mathematics theory of numbers
Read more…
English [en] · Spanish [es] · PDF · 10.4MB · 1968 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
base score: 11063.0, final score: 40.83666
upload/misc/lvaAHWPN1n0kNs0P9pfu/How to Solve It_ A New Aspect of Mathemati - Polya, G_.pdf
How to Solve It: A New Aspect of Mathematical Method (Princeton Science Library) David Bleecker Princeton University Press, Princeton Science Library, 2008
[MR2183670](https://mathscinet.ams.org/mathscinet-getitem?mr=2183670) This version of the classic book by G. Polya is enhanced with a foreword by John H. Conway (see also the earlier versions [1945; [MR0011666](https://mathscinet.ams.org/mathscinet/search/publdoc.html?r=1&pg1=MR&s1=11666&loc=fromrevtext); 1988; [MR1090087](https://mathscinet.ams.org/mathscinet/search/publdoc.html?r=1&pg1=MR&s1=1090087&loc=fromrevtext)]). From the foreword: "How to solve it is a wonderful book! This I realized when I first read right through it as a student many years ago, but it has taken me a long time to appreciate just how wonderful it is. Why is that? One part of the answer is that the book is unique. In all my years as a student and teacher, I have never seen another that lives up to George Polya's title by teaching you how to go about solving problems.'' * * * A perennial bestseller by eminent mathematician G. Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out—from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft—indeed, brilliant—instructions on stripping away irrelevancies and going straight to the heart of the problem.
Read more…
English [en] · PDF · 3.4MB · 2008 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/upload/zlib · Save
base score: 11065.0, final score: 40.779438
lgli/G. H. Hardy, E. M. Wright - An Introduction to the Theory of Numbers (1975, ).pdf
An Introduction to the Theory of Numbers G. H. Hardy, E. M. Wright 4, 1975
English [en] · PDF · 69.6MB · 1975 · 📘 Book (non-fiction) · 🚀/lgli/zlib · Save
base score: 11063.0, final score: 40.270817
lgli/G:\!upload\!add\!isbns\Introduction To The Theory Of Numbers, An - G H Hardy, E M Wright - Oxford - Isbn 0198533107.pdf
Introduction To The Theory Of Numbers, An G H Hardy, E M Wright Oxford University Press, 1985
English [en] · PDF · 10.3MB · 1985 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11062.0, final score: 39.99225
lgli/G. H. Hardy, E. W. Wright - An Introduction to the Theory of Numbers, 6th edition.pdf
An Introduction to the Theory of Numbers, 6th edition G. H. Hardy, E. W. Wright The People's Posts and Telecommunications Publishing House, 6ed., 2008
English [en] · PDF · 37.6MB · 2008 · 📘 Book (non-fiction) · 🚀/lgli/zlib · Save
base score: 11065.0, final score: 39.914364
lgli/K:\!genesis\0day\kolxoz\79\P_Physics\PE_Electromagnetism\Lorentc G.A. (_Lorentz H.A._) Teoriya e'lektromagnitnogo polya (GITTL, 1933)(ru)(600dpi)(K)(T)(O)(172s)_PE_.djvu
Теория электромагнитного поля Лорентц Г.А.(Lorentz H.A.) Государственное издательство технико теоретической литературы, 1933
Russian [ru] · DJVU · 3.5MB · 1933 · 📘 Book (non-fiction) · 🚀/lgli/lgrs/nexusstc/zlib · Save
base score: 11047.0, final score: 39.736588
Previous 1 Next
Previous 1 Next
Anna’s Archive
Home
Search
Donate
🧬 SciDB
FAQ
Account
Log in / Register
Account
Public profile
Downloaded files
My donations
Referrals
Explore
Activity
Codes Explorer
ISBN Visualization ↗
Community Projects ↗
Open data
Datasets
Torrents
LLM data
Stay in touch
Contact email
Anna’s Blog ↗
Reddit ↗
Matrix ↗
Help out
Improve metadata
Volunteering & Bounties
Translate ↗
Development
Anna’s Software ↗
Security
DMCA / copyright claims
Alternatives
annas-archive.li ↗
annas-archive.se ↗
annas-archive.org ↗
SLUM [unaffiliated] ↗
SLUM 2 [unaffiliated] ↗